import contextlib import math import einops import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from transformers import Qwen2ForCausalLM, SiglipVisionModel from transformers.cache_utils import Cache from transformers.generation.utils import GenerationMixin from transformers.modeling_outputs import BaseModelOutputWithPooling, CausalLMOutputWithPast from transformers.modeling_utils import PreTrainedModel from .configuration_nvila import NVILAConfig MM_HIDDEN_SIZE = 3456 class NVILAMultiModalProjectorDownsampleBlock(nn.Module): def forward(self, x: Tensor) -> Tensor: batch_size, sequence_length, hidden_size = x.shape feat_size = math.isqrt(sequence_length) features = x.reshape(batch_size, feat_size, feat_size, hidden_size) pad_after = feat_size % 2 if pad_after > 0: features = F.pad(features, (0, 0, 0, pad_after, 0, pad_after)) feat_size = feat_size + pad_after features = features.reshape(batch_size, feat_size // 2, 2, feat_size // 2, 2, hidden_size) features = features.permute(0, 1, 3, 2, 4, 5).contiguous() features = features.reshape(batch_size, -1, 4 * hidden_size) return features class NVILAMultiModalProjector(nn.Module): def __init__(self, config: NVILAConfig): super().__init__() self.layers = nn.Sequential( NVILAMultiModalProjectorDownsampleBlock(), nn.LayerNorm(MM_HIDDEN_SIZE * 4), nn.Linear(MM_HIDDEN_SIZE * 4, config.text_config.hidden_size), nn.GELU(), nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size), ) def forward(self, x: Tensor) -> Tensor: return self.layers(x) class NVILAForConditionalGeneration(PreTrainedModel, GenerationMixin): config_class = NVILAConfig base_model_prefix: str = "llm" _auto_class = "AutoModel" _supports_flash_attn_2 = True _supports_sdpa = True def __init__(self, config: NVILAConfig): super().__init__(config) self.config: NVILAConfig @contextlib.contextmanager def default_torch_dtype(dtype): original_dtype = torch.get_default_dtype() torch.set_default_dtype(dtype) try: yield finally: torch.set_default_dtype(original_dtype) with default_torch_dtype(config.torch_dtype): self.vision_tower = SiglipVisionModel(config.vision_config) self.mm_projector = NVILAMultiModalProjector(config) self.llm = Qwen2ForCausalLM(config.text_config) self.post_init() def forward( self, *, block_sizes: list[tuple[int, int]] | None = None, input_ids: Tensor | None = None, inputs_embeds: Tensor | None = None, pixel_values: Tensor | None = None, pixel_values_videos: Tensor | None = None, **kwargs, ) -> CausalLMOutputWithPast: assert (input_ids is None) != ( inputs_embeds is None ), "Exactly one of `input_ids` or `inputs_embeds` must be specified." if input_ids is not None and torch.any( torch.isin( input_ids, torch.tensor( [self.config.image_token_id, self.config.video_token_id], device=input_ids.device, ), ).any() ): # Prefill inputs_embeds = self._embed( block_sizes=block_sizes, input_ids=input_ids, pixel_values=pixel_values, pixel_values_videos=pixel_values_videos, ) input_ids = None outputs = self.llm( input_ids=input_ids, inputs_embeds=inputs_embeds, **kwargs, ) return outputs def _embed( self, *, block_sizes: list[tuple[int, int]] | None, input_ids: Tensor, pixel_values: Tensor | None, pixel_values_videos: Tensor | None, ) -> Tensor: inputs_embeds: Tensor = self.llm.model.embed_tokens(input_ids) for pixel_values, media_token_id in [ (pixel_values, self.config.image_token_id), (pixel_values_videos, self.config.video_token_id), ]: if pixel_values is None: continue vision_features = self._encode_vision( pixel_values, block_sizes=block_sizes, ) vision_features = einops.rearrange(vision_features, "n p d -> (n p) d") inputs_embeds[input_ids == media_token_id] = vision_features return inputs_embeds def _encode_vision( self, pixel_values: Tensor, *, block_sizes: list[tuple[int, int]] | None = None, ) -> Tensor: vision_tower_output: BaseModelOutputWithPooling = self.vision_tower( pixel_values.to(device=self.vision_tower.device, dtype=self.vision_tower.dtype), output_hidden_states=True, ) assert vision_tower_output.hidden_states is not None vision_features: Tensor = vision_tower_output.hidden_states[-2] vision_features_list, block_sizes = merge_features_for_dynamic_s2( vision_features, block_sizes=block_sizes if block_sizes is not None else [None] * vision_features.shape[0], resize_output_to_scale_idx=-1, scales=[448, 896, 1344], ) vision_features_list = [ split_chessboard(x, block_size[0], block_size[1]) for x, block_size in zip(vision_features_list, block_sizes) ] vision_features = torch.cat([einops.rearrange(x, "b c h w -> b (h w) c") for x in vision_features_list]) vision_features = self.mm_projector(vision_features.to(self.device, self.dtype)) vision_features_list = list( vision_features.split([block_size[0] * block_size[1] for block_size in block_sizes], dim=0) ) vision_features_list = [ merge_chessboard(x, block_size[0], block_size[1]) for x, block_size in zip(vision_features_list, block_sizes) ] vision_features = torch.stack([einops.rearrange(x, "1 c h w -> (h w) c") for x in vision_features_list]) return vision_features # NOTE: The following functions are directly copied from VILA codebase. def merge_chessboard(x, num_split_h, num_split_w): """ x: b * n * c or b * h * w * c out: b * c * h * w Assuming x contains num_split**2 sub-squares concatenated along batch dimension, merge the sub-squares back to the original whole square. """ B = x.shape[0] if x.dim() == 3: N = x.shape[1] x = einops.rearrange(x, "b (h w) c -> b c h w", h=math.isqrt(N), w=math.isqrt(N)) assert B % (num_split_h * num_split_w) == 0 b = B // (num_split_h * num_split_w) x_merge = torch.cat( [ torch.cat( [x[(i * num_split_w + j) * b : (i * num_split_w + j + 1) * b] for j in range(num_split_w)], dim=-1 ) for i in range(num_split_h) ], dim=-2, ) return x_merge def merge_features_for_dynamic_s2(image_features, block_sizes, *, scales, resize_output_to_scale_idx): image_features_each_image = [] new_block_sizes = [] block_cnt = 0 for block_size_each_image in block_sizes: if block_size_each_image is None: cur_features = image_features[block_cnt : block_cnt + 1] cur_features = einops.rearrange(cur_features, "1 (h w) c -> 1 c h w", h=math.isqrt(cur_features.shape[1])) cur_features = cur_features.repeat(1, len(scales), 1, 1) image_features_each_image.append(cur_features) new_block_sizes.append((1, 1)) block_cnt += 1 else: cur_features_each_scale = [] for scale in scales[:-1]: num_blocks_this_scale = (scale // scales[0]) ** 2 cur_features_each_scale.append( merge_chessboard( image_features[block_cnt : block_cnt + num_blocks_this_scale], num_split_h=scale // scales[0], num_split_w=scale // scales[0], ) ) # 1 * C * H * W block_cnt += num_blocks_this_scale num_blocks_last_scale = block_size_each_image[0] * block_size_each_image[1] cur_features_each_scale.append( merge_chessboard( image_features[block_cnt : block_cnt + num_blocks_last_scale], num_split_h=block_size_each_image[0], num_split_w=block_size_each_image[1], ) ) # 1 * C * H * W block_cnt += num_blocks_last_scale # resize and concat features from different scales output_size = cur_features_each_scale[resize_output_to_scale_idx].shape[-2:] cur_features = torch.cat( [ F.interpolate(cur_features_each_scale[i].to(torch.float32), size=output_size, mode="area").to( cur_features_each_scale[i].dtype ) for i in range(len(cur_features_each_scale)) ], dim=1, ) # cur_features = rearrange(cur_features, "1 c h w -> (h w) c") image_features_each_image.append(cur_features) if resize_output_to_scale_idx == len(scales) - 1 or resize_output_to_scale_idx == -1: new_block_sizes.append(block_size_each_image) else: new_block_sizes.append( ( scales[resize_output_to_scale_idx] // scales[0], scales[resize_output_to_scale_idx] // scales[0], ) ) assert block_cnt == len( image_features ), f"The number of blocks ({block_cnt}) does not match length of image_features ({len(image_features)})!" return image_features_each_image, new_block_sizes def split_chessboard(x, num_split_h, num_split_w): """ x: b * c * h * w out: b * c * h * w Deividing x into num_split**2 sub-squares, and concatenate all the sub-squares on the batch dimension """ B, C, H, W = x.shape assert H % num_split_h == 0 and W % num_split_w == 0 h, w = H // num_split_h, W // num_split_w x_split = torch.cat( [x[:, :, i * h : (i + 1) * h, j * w : (j + 1) * w] for i in range(num_split_h) for j in range(num_split_w)], dim=0, ) return x_split