Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
datasets:
|
| 3 |
+
- EleutherAI/pile
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
pipeline_tag: fill-mask
|
| 7 |
+
tags:
|
| 8 |
+
- summarization
|
| 9 |
+
- translation
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# Model Card for T5v2 Base
|
| 13 |
+
|
| 14 |
+
# Table of Contents
|
| 15 |
+
|
| 16 |
+
1. [Model Details](#model-details)
|
| 17 |
+
2. [Uses](#uses)
|
| 18 |
+
3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
|
| 19 |
+
4. [Training Details](#training-details)
|
| 20 |
+
5. [Evaluation](#evaluation)
|
| 21 |
+
6. [Environmental Impact](#environmental-impact)
|
| 22 |
+
7. [Citation](#citation)
|
| 23 |
+
8. [Model Card Authors](#model-card-authors)
|
| 24 |
+
9. [How To Get Started With the Model](#how-to-get-started-with-the-model)
|
| 25 |
+
|
| 26 |
+
# Model Details
|
| 27 |
+
|
| 28 |
+
## Model Description
|
| 29 |
+
|
| 30 |
+
More information needed.
|
| 31 |
+
# Uses
|
| 32 |
+
|
| 33 |
+
## Direct Use and Downstream Use
|
| 34 |
+
|
| 35 |
+
More information needed.
|
| 36 |
+
|
| 37 |
+
## Out-of-Scope Use
|
| 38 |
+
|
| 39 |
+
More information needed.
|
| 40 |
+
|
| 41 |
+
# Bias, Risks, and Limitations
|
| 42 |
+
|
| 43 |
+
More information needed.
|
| 44 |
+
|
| 45 |
+
## Recommendations
|
| 46 |
+
|
| 47 |
+
More information needed.
|
| 48 |
+
|
| 49 |
+
# Training Details
|
| 50 |
+
|
| 51 |
+
## Training Data
|
| 52 |
+
|
| 53 |
+
The model was pre-trained on the Pile using an unsupervised denoising objective,
|
| 54 |
+
## Training Procedure
|
| 55 |
+
|
| 56 |
+
More information needed.
|
| 57 |
+
|
| 58 |
+
# Evaluation
|
| 59 |
+
|
| 60 |
+
## Testing Data, Factors & Metrics
|
| 61 |
+
|
| 62 |
+
More information needed.
|
| 63 |
+
## Results
|
| 64 |
+
|
| 65 |
+
More information needed.
|
| 66 |
+
|
| 67 |
+
# Environmental Impact
|
| 68 |
+
|
| 69 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 70 |
+
|
| 71 |
+
- **Hardware Type:** Google Cloud TPU Pods
|
| 72 |
+
- **Hours used:** More information needed
|
| 73 |
+
- **Cloud Provider:** GCP
|
| 74 |
+
- **Compute Region:** More information needed
|
| 75 |
+
- **Carbon Emitted:** More information needed
|
| 76 |
+
|
| 77 |
+
# Citation
|
| 78 |
+
|
| 79 |
+
**BibTeX:**
|
| 80 |
+
|
| 81 |
+
```bibtex
|
| 82 |
+
@article{2024t5v2,
|
| 83 |
+
author = {Lintang Sutawika and Aran Komatsuzaki and Colin Raffel},
|
| 84 |
+
title = {T5v2, an update of T5},
|
| 85 |
+
year = {2024},
|
| 86 |
+
url = {}
|
| 87 |
+
}
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
# How to Get Started with the Model
|
| 91 |
+
|
| 92 |
+
Use the code below to get started with the model.
|
| 93 |
+
|
| 94 |
+
<details>
|
| 95 |
+
<summary> Click to expand </summary>
|
| 96 |
+
|
| 97 |
+
```python
|
| 98 |
+
from transformers import UMT5Tokenizer, UMT5Model
|
| 99 |
+
|
| 100 |
+
tokenizer = UMT5Tokenizer.from_pretrained("EleutherAI/t5-v2-base")
|
| 101 |
+
model = UMT5Model.from_pretrained("EleutherAI/t5-v2-base")
|
| 102 |
+
|
| 103 |
+
input_ids = tokenizer(
|
| 104 |
+
"Studies have been shown that owning a dog is good for you", return_tensors="pt"
|
| 105 |
+
).input_ids # Batch size 1
|
| 106 |
+
decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
|
| 107 |
+
|
| 108 |
+
# forward pass
|
| 109 |
+
outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
|
| 110 |
+
last_hidden_states = outputs.last_hidden_state
|
| 111 |
+
```
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
</details>
|