Update README.md
Browse files
README.md
CHANGED
|
@@ -73,14 +73,16 @@ model = AutoModelForCausalLM.from_pretrained("EleutherAI/polyglot-ko-5.8b")
|
|
| 73 |
|
| 74 |
## Evaluation results
|
| 75 |
|
| 76 |
-
We evaluate Polyglot-Ko-
|
| 77 |
|
| 78 |
The following tables show the results when the number of few-shot examples differ. You can reproduce these results using the [polyglot branch of lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot) and the following scripts. For a fair comparison, all models were run under the same conditions and using the same prompts. In the tables, `n` refers to the number of few-shot examples.
|
| 79 |
|
|
|
|
|
|
|
| 80 |
```console
|
| 81 |
python main.py \
|
| 82 |
--model gpt2 \
|
| 83 |
-
--model_args pretrained='EleutherAI/polyglot-ko-
|
| 84 |
--tasks kobest_copa,kobest_hellaswag \
|
| 85 |
--num_fewshot $YOUR_NUM_FEWSHOT \
|
| 86 |
--batch_size $YOUR_BATCH_SIZE \
|
|
@@ -90,31 +92,73 @@ python main.py \
|
|
| 90 |
|
| 91 |
### COPA (F1)
|
| 92 |
|
| 93 |
-
| Model | params | n=0
|
| 94 |
|----------------------------------------------------------------------------------------------|--------|--------|--------|---------|---------|
|
| 95 |
| [skt/ko-gpt-trinity-1.2B-v0.5](https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5) | 1.2B | 0.6696 | 0.6477 | 0.6419 | 0.6514 |
|
| 96 |
| [kakaobrain/kogpt](https://huggingface.co/kakaobrain/kogpt) | 6.0B | 0.7345 | 0.7287 | 0.7277 | 0.7479 |
|
| 97 |
| [facebook/xglm-7.5B](https://huggingface.co/facebook/xglm-7.5B) | 7.5B | 0.6723 | 0.6731 | 0.6769 | 0.7119 |
|
| 98 |
| [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) | 1.3B | 0.7196 | 0.7193 | 0.7204 | 0.7206 |
|
| 99 |
| [EleutherAI/polyglot-ko-3.8b](https://huggingface.co/EleutherAI/polyglot-ko-3.8b) | 3.8B | 0.7595 | 0.7608 | 0.7638 | 0.7788 |
|
| 100 |
-
| **[EleutherAI/polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) (this)**
|
| 101 |
| [EleutherAI/polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 12.8B | 0.7937 | 0.8108 | 0.8037 | 0.8369 |
|
| 102 |
|
| 103 |
-
<img src="https://
|
| 104 |
|
| 105 |
### HellaSwag (F1)
|
| 106 |
|
| 107 |
-
| Model
|
| 108 |
-
|
| 109 |
-
| [skt/ko-gpt-trinity-1.2B-v0.5](https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5)
|
| 110 |
-
| [kakaobrain/kogpt](https://huggingface.co/kakaobrain/kogpt)
|
| 111 |
-
| [facebook/xglm-7.5B](https://huggingface.co/facebook/xglm-7.5B)
|
| 112 |
-
| [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b)
|
| 113 |
-
| [EleutherAI/polyglot-ko-3.8b](https://huggingface.co/EleutherAI/polyglot-ko-3.8b)
|
| 114 |
-
| **[EleutherAI/polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) (this)**
|
| 115 |
-
| [EleutherAI/polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b)
|
| 116 |
-
|
| 117 |
-
<img src="https://
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
## Limitations and Biases
|
| 120 |
|
|
|
|
| 73 |
|
| 74 |
## Evaluation results
|
| 75 |
|
| 76 |
+
We evaluate Polyglot-Ko-3.8B on [KOBEST dataset](https://arxiv.org/abs/2204.04541), a benchmark with 5 downstream tasks, against comparable models such as skt/ko-gpt-trinity-1.2B-v0.5, kakaobrain/kogpt and facebook/xglm-7.5B, using the prompts provided in the paper.
|
| 77 |
|
| 78 |
The following tables show the results when the number of few-shot examples differ. You can reproduce these results using the [polyglot branch of lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot) and the following scripts. For a fair comparison, all models were run under the same conditions and using the same prompts. In the tables, `n` refers to the number of few-shot examples.
|
| 79 |
|
| 80 |
+
In case of WiC dataset, all models show random performance.
|
| 81 |
+
|
| 82 |
```console
|
| 83 |
python main.py \
|
| 84 |
--model gpt2 \
|
| 85 |
+
--model_args pretrained='EleutherAI/polyglot-ko-3.8b' \
|
| 86 |
--tasks kobest_copa,kobest_hellaswag \
|
| 87 |
--num_fewshot $YOUR_NUM_FEWSHOT \
|
| 88 |
--batch_size $YOUR_BATCH_SIZE \
|
|
|
|
| 92 |
|
| 93 |
### COPA (F1)
|
| 94 |
|
| 95 |
+
| Model | params | n=0 | n=5 | n=10 | n=50 |
|
| 96 |
|----------------------------------------------------------------------------------------------|--------|--------|--------|---------|---------|
|
| 97 |
| [skt/ko-gpt-trinity-1.2B-v0.5](https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5) | 1.2B | 0.6696 | 0.6477 | 0.6419 | 0.6514 |
|
| 98 |
| [kakaobrain/kogpt](https://huggingface.co/kakaobrain/kogpt) | 6.0B | 0.7345 | 0.7287 | 0.7277 | 0.7479 |
|
| 99 |
| [facebook/xglm-7.5B](https://huggingface.co/facebook/xglm-7.5B) | 7.5B | 0.6723 | 0.6731 | 0.6769 | 0.7119 |
|
| 100 |
| [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) | 1.3B | 0.7196 | 0.7193 | 0.7204 | 0.7206 |
|
| 101 |
| [EleutherAI/polyglot-ko-3.8b](https://huggingface.co/EleutherAI/polyglot-ko-3.8b) | 3.8B | 0.7595 | 0.7608 | 0.7638 | 0.7788 |
|
| 102 |
+
| **[EleutherAI/polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) (this)** | **5.8B** | **0.7745** | **0.7676** | **0.7775** | **0.7887** |
|
| 103 |
| [EleutherAI/polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 12.8B | 0.7937 | 0.8108 | 0.8037 | 0.8369 |
|
| 104 |
|
| 105 |
+
<img src="https://github.com/EleutherAI/polyglot/assets/19511788/d5b49364-aed5-4467-bae2-5a322c8e2ceb" width="800px">
|
| 106 |
|
| 107 |
### HellaSwag (F1)
|
| 108 |
|
| 109 |
+
| Model | params | n=0 | n=5 | n=10 | n=50 |
|
| 110 |
+
|----------------------------------------------------------------------------------------------|--------|--------|--------|---------|---------|
|
| 111 |
+
| [skt/ko-gpt-trinity-1.2B-v0.5](https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5) | 1.2B | 0.5243 | 0.5272 | 0.5166 | 0.5352 |
|
| 112 |
+
| [kakaobrain/kogpt](https://huggingface.co/kakaobrain/kogpt) | 6.0B | 0.5590 | 0.5833 | 0.5828 | 0.5907 |
|
| 113 |
+
| [facebook/xglm-7.5B](https://huggingface.co/facebook/xglm-7.5B) | 7.5B | 0.5665 | 0.5689 | 0.5565 | 0.5622 |
|
| 114 |
+
| [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) | 1.3B | 0.5247 | 0.5260 | 0.5278 | 0.5427 |
|
| 115 |
+
| [EleutherAI/polyglot-ko-3.8b](https://huggingface.co/EleutherAI/polyglot-ko-3.8b) | 3.8B | 0.5707 | 0.5830 | 0.5670 | 0.5787 |
|
| 116 |
+
| **[EleutherAI/polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) (this)** | **5.8B** | **0.5976** | **0.5998** | **0.5979** | **0.6208** |
|
| 117 |
+
| [EleutherAI/polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 12.8B | 0.5954 | 0.6306 | 0.6098 | 0.6118 |
|
| 118 |
+
|
| 119 |
+
<img src="https://github.com/EleutherAI/polyglot/assets/19511788/5acb60ac-161a-4ab3-a296-db4442e08b7f" width="800px">
|
| 120 |
+
|
| 121 |
+
### BoolQ (F1)
|
| 122 |
+
|
| 123 |
+
| Model | params | n=0 | n=5 | n=10 | n=50 |
|
| 124 |
+
|----------------------------------------------------------------------------------------------|--------|--------|--------|---------|---------|
|
| 125 |
+
| [skt/ko-gpt-trinity-1.2B-v0.5](https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5) | 1.2B | 0.3356 | 0.4014 | 0.3640 | 0.3560 |
|
| 126 |
+
| [kakaobrain/kogpt](https://huggingface.co/kakaobrain/kogpt) | 6.0B | 0.4514 | 0.5981 | 0.5499 | 0.5202 |
|
| 127 |
+
| [facebook/xglm-7.5B](https://huggingface.co/facebook/xglm-7.5B) | 7.5B | 0.4464 | 0.3324 | 0.3324 | 0.3324 |
|
| 128 |
+
| [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) | 1.3B | 0.3552 | 0.4751 | 0.4109 | 0.4038 |
|
| 129 |
+
| [EleutherAI/polyglot-ko-3.8b](https://huggingface.co/EleutherAI/polyglot-ko-3.8b) | 3.8B | 0.4320 | 0.5263 | 0.4930 | 0.4038 |
|
| 130 |
+
| **[EleutherAI/polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) (this)** | **5.8B** | **0.4356** | **0.5698** | **0.5187** | **0.5236** |
|
| 131 |
+
| [EleutherAI/polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 12.8B | 0.4818 | 0.6041 | 0.6289 | 0.6448 |
|
| 132 |
+
|
| 133 |
+
<img src="https://github.com/EleutherAI/polyglot/assets/19511788/b74c23c0-01f3-4b68-9e10-a48e9aa052ab" width="800px">
|
| 134 |
+
|
| 135 |
+
### SentiNeg (F1)
|
| 136 |
+
|
| 137 |
+
| Model | params | n=0 | n=5 | n=10 | n=50 |
|
| 138 |
+
|----------------------------------------------------------------------------------------------|--------|--------|--------|---------|---------|
|
| 139 |
+
| [skt/ko-gpt-trinity-1.2B-v0.5](https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5) | 1.2B | 0.6065 | 0.6878 | 0.7280 | 0.8413 |
|
| 140 |
+
| [kakaobrain/kogpt](https://huggingface.co/kakaobrain/kogpt) | 6.0B | 0.3747 | 0.8942 | 0.9294 | 0.9698 |
|
| 141 |
+
| [facebook/xglm-7.5B](https://huggingface.co/facebook/xglm-7.5B) | 7.5B | 0.3578 | 0.4471 | 0.3964 | 0.5271 |
|
| 142 |
+
| [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) | 1.3B | 0.6790 | 0.6257 | 0.5514 | 0.7851 |
|
| 143 |
+
| [EleutherAI/polyglot-ko-3.8b](https://huggingface.co/EleutherAI/polyglot-ko-3.8b) | 3.8B | 0.4858 | 0.7950 | 0.7320 | 0.7851 |
|
| 144 |
+
| **[EleutherAI/polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) (this)** | **5.8B** | **0.3394** | **0.8841** | **0.8808** | **0.9521** |
|
| 145 |
+
| [EleutherAI/polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 12.8B | 0.9117 | 0.9015 | 0.9345 | 0.9723 |
|
| 146 |
+
|
| 147 |
+
<img src="https://github.com/EleutherAI/polyglot/assets/19511788/95b56b19-d349-4b70-9ff9-94a5560f89ee" width="800px">
|
| 148 |
+
|
| 149 |
+
### WiC (F1)
|
| 150 |
+
|
| 151 |
+
| Model | params | n=0 | n=5 | n=10 | n=50 |
|
| 152 |
+
|----------------------------------------------------------------------------------------------|--------|--------|--------|---------|---------|
|
| 153 |
+
| [skt/ko-gpt-trinity-1.2B-v0.5](https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5) | 1.2B | 0.3290 | 0.4313 | 0.4001 | 0.3621 |
|
| 154 |
+
| [kakaobrain/kogpt](https://huggingface.co/kakaobrain/kogpt) | 6.0B | 0.3526 | 0.4775 | 0.4358 | 0.4061 |
|
| 155 |
+
| [facebook/xglm-7.5B](https://huggingface.co/facebook/xglm-7.5B) | 7.5B | 0.3280 | 0.4903 | 0.4945 | 0.3656 |
|
| 156 |
+
| [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) | 1.3B | 0.3297 | 0.4850 | 0.4650 | 0.3290 |
|
| 157 |
+
| [EleutherAI/polyglot-ko-3.8b](https://huggingface.co/EleutherAI/polyglot-ko-3.8b) | 3.8B | 0.3390 | 0.4944 | 0.4203 | 0.3835 |
|
| 158 |
+
| **[EleutherAI/polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) (this)** | **5.8B** | **0.3913** | **0.4688** | **0.4189** | **0.3910** |
|
| 159 |
+
| [EleutherAI/polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 12.8B | 0.3985 | 0.3683 | 0.3307 | 0.3273 |
|
| 160 |
+
|
| 161 |
+
<img src="https://github.com/EleutherAI/polyglot/assets/19511788/4de4a4c3-d7ac-4e04-8b0c-0d533fe88294" width="800px">
|
| 162 |
|
| 163 |
## Limitations and Biases
|
| 164 |
|