Commit
·
eae0ac9
1
Parent(s):
2b2e192
Update README.md
Browse files
README.md
CHANGED
|
@@ -1 +1,155 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- ko
|
| 4 |
+
tags:
|
| 5 |
+
- pytorch
|
| 6 |
+
- causal-lm
|
| 7 |
+
license: apache-2.0
|
| 8 |
+
|
| 9 |
+
---
|
| 10 |
+
# Polyglot-Ko-5.8B
|
| 11 |
+
|
| 12 |
+
## Model Description
|
| 13 |
+
Polyglot-Ko is a series of large-scale Korean autoregressive language models made by the EleutherAI polyglot team.
|
| 14 |
+
|
| 15 |
+
| Hyperparameter | Value |
|
| 16 |
+
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|
| 17 |
+
| \\(n_{parameters}\\) | 5,885,059,072 |
|
| 18 |
+
| \\(n_{layers}\\) | 28 |
|
| 19 |
+
| \\(d_{model}\\) | 4096 |
|
| 20 |
+
| \\(d_{ff}\\) | 16,384 |
|
| 21 |
+
| \\(n_{heads}\\) | 16 |
|
| 22 |
+
| \\(d_{head}\\) | 256 |
|
| 23 |
+
| \\(n_{ctx}\\) | 2,048 |
|
| 24 |
+
| \\(n_{vocab}\\) | 30,003 / 30,080 |
|
| 25 |
+
| Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) |
|
| 26 |
+
| RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) |
|
| 27 |
+
|
| 28 |
+
The model consists of 28 transformer layers with a model dimension of 4096, and a feedforward dimension of 16384. The model
|
| 29 |
+
dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64
|
| 30 |
+
dimensions of each head. The model is trained with a tokenization vocabulary of 30003.
|
| 31 |
+
|
| 32 |
+
## Training data
|
| 33 |
+
|
| 34 |
+
Polyglot-Ko-5.8B was trained on 863 GB of Korean language data (1.2TB before processing), a large-scale dataset curated by [TUNiB](https://tunib.ai/). The data collection process has abided by South Korean laws. This dataset was collected for the purpose of training Polyglot-Ko models, so it will not be released for public use.
|
| 35 |
+
|
| 36 |
+
| Source |Size (GB) | Link |
|
| 37 |
+
|-------------------------------------|---------|------------------------------------------|
|
| 38 |
+
| Korean blog posts | 682.3 | - |
|
| 39 |
+
| Korean news dataset | 87.0 | - |
|
| 40 |
+
| Modu corpus | 26.4 |corpus.korean.go.kr |
|
| 41 |
+
| Korean patent dataset | 19.0 | - |
|
| 42 |
+
| Korean Q & A dataset | 18.1 | - |
|
| 43 |
+
| KcBert dataset | 12.7 | github.com/Beomi/KcBERT |
|
| 44 |
+
| Korean fiction dataset | 6.1 | - |
|
| 45 |
+
| Korean online comments | 4.2 | - |
|
| 46 |
+
| Korean wikipedia | 1.4 | ko.wikipedia.org |
|
| 47 |
+
| Clova call | < 1.0 | github.com/clovaai/ClovaCall |
|
| 48 |
+
| Naver sentiment movie corpus | < 1.0 | github.com/e9t/nsmc |
|
| 49 |
+
| Korean hate speech dataset | < 1.0 | - |
|
| 50 |
+
| Open subtitles | < 1.0 | opus.nlpl.eu/OpenSubtitles.php |
|
| 51 |
+
| AIHub various tasks datasets | < 1.0 |aihub.or.kr |
|
| 52 |
+
| Standard Korean language dictionary | < 1.0 | stdict.korean.go.kr/main/main.do |
|
| 53 |
+
|
| 54 |
+
Furthermore, in order to avoid the model memorizing and generating personally identifiable information (PII) in the training data, we masked out the following sensitive information in the pre-processing stage:
|
| 55 |
+
|
| 56 |
+
* `<|acc|>` : bank account number
|
| 57 |
+
* `<|rrn|>` : resident registration number
|
| 58 |
+
* `<|tell|>` : phone number
|
| 59 |
+
|
| 60 |
+
## Training procedure
|
| 61 |
+
Polyglot-Ko-5.8B was trained for 219 billion tokens over 105,000 steps on 256 A100 GPUs with the [GPT-NeoX framework](https://github.com/EleutherAI/gpt-neox). It was trained as an autoregressive language model, using cross-entropy loss to maximize the likelihood of predicting the next token.
|
| 62 |
+
|
| 63 |
+
## How to use
|
| 64 |
+
|
| 65 |
+
This model can be easily loaded using the `AutoModelForCausalLM` class:
|
| 66 |
+
|
| 67 |
+
```python
|
| 68 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 69 |
+
|
| 70 |
+
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/polyglot-ko-5.8b")
|
| 71 |
+
model = AutoModelForCausalLM.from_pretrained("EleutherAI/polyglot-ko-5.8b")
|
| 72 |
+
```
|
| 73 |
+
|
| 74 |
+
## Evaluation results
|
| 75 |
+
|
| 76 |
+
We evaluate Polyglot-Ko-5.8B on [KOBEST dataset](https://arxiv.org/abs/2204.04541), a benchmark with 5 downstream tasks, against comparable models such as skt/ko-gpt-trinity-1.2B-v0.5, kakaobrain/kogpt and facebook/xglm-7.5B, using the prompts provided in the paper.
|
| 77 |
+
|
| 78 |
+
The following tables show the results when the number of few-shot examples differ. You can reproduce these results using the [polyglot branch of lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot) and the following scripts. For a fair comparison, all models were run under the same conditions and using the same prompts. In the tables, `n` refers to the number of few-shot examples.
|
| 79 |
+
|
| 80 |
+
```console
|
| 81 |
+
python main.py \
|
| 82 |
+
--model gpt2 \
|
| 83 |
+
--model_args pretrained='EleutherAI/polyglot-ko-5.8b' \
|
| 84 |
+
--tasks kobest_copa,kobest_hellaswag \
|
| 85 |
+
--num_fewshot $YOUR_NUM_FEWSHOT \
|
| 86 |
+
--batch_size $YOUR_BATCH_SIZE \
|
| 87 |
+
--device $YOUR_DEVICE \
|
| 88 |
+
--output_path $/path/to/output/
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
**We show model performance on COPA and HellaSwag. On the other three tasks, the evaluated models all performed similarly close to random guessing.**
|
| 92 |
+
|
| 93 |
+
### COPA (F1)
|
| 94 |
+
|
| 95 |
+
| Model | params | n=0 | n=5 | n=10 | n=50 |
|
| 96 |
+
|----------------------------------------------------------------------------------------------|--------|--------|--------|---------|---------|
|
| 97 |
+
| [skt/ko-gpt-trinity-1.2B-v0.5](https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5) | 1.2B | 0.6696 | 0.6477 | 0.6419 | 0.6514 |
|
| 98 |
+
| [kakaobrain/kogpt](https://huggingface.co/kakaobrain/kogpt) | 6.0B | 0.7345 | 0.7287 | 0.7277 | 0.7479 |
|
| 99 |
+
| [facebook/xglm-7.5B](https://huggingface.co/facebook/xglm-7.5B) | 7.5B | 0.6723 | 0.6731 | 0.6769 | 0.7119 |
|
| 100 |
+
| [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) | 1.3B | 0.7196 | 0.7193 | 0.7204 | 0.7206 |
|
| 101 |
+
| [EleutherAI/polyglot-ko-3.8b](https://huggingface.co/EleutherAI/polyglot-ko-3.8b) | 3.8B | 0.7595 | 0.7608 | 0.7638 | 0.7788 |
|
| 102 |
+
| **[EleutherAI/polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b)(this)** |**5.8B**| **0.7745**|**0.7676**|**0.7775**|**0.7887**|
|
| 103 |
+
|
| 104 |
+
<img src="https://user-images.githubusercontent.com/38183241/194697388-f0e6999d-3935-4716-9faa-e14e5a9b6de5.png" width="800px">
|
| 105 |
+
|
| 106 |
+
### HellaSwag (F1)
|
| 107 |
+
|
| 108 |
+
| Model | params |n=0 | n=5 | n=10 | n=50 |
|
| 109 |
+
|------------------------------------------------------------------------------------------------|--------|--------|--------|---------|---------|
|
| 110 |
+
| [skt/ko-gpt-trinity-1.2B-v0.5](https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5) | 1.2B | 0.4036 | 0.4 | 0.4011 | 0.4214 |
|
| 111 |
+
| [kakaobrain/kogpt](https://huggingface.co/kakaobrain/kogpt) | 6.0B | 0.4599 | 0.456 | 0.4616 | 0.4754 |
|
| 112 |
+
| [facebook/xglm-7.5B](https://huggingface.co/facebook/xglm-7.5B) | 7.5B | 0.4261 | 0.437 | 0.4409 | 0.4517 |
|
| 113 |
+
| [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) | 1.3B | 0.4013 | 0.3984 | 0.417 | 0.4416 |
|
| 114 |
+
| [EleutherAI/polyglot-ko-3.8b](https://huggingface.co/EleutherAI/polyglot-ko-3.8b) | 3.8B | 0.4438 | 0.4786 | 0.4737 | 0.4822 |
|
| 115 |
+
| **[EleutherAI/polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b)** | **5.8B**| **0.4853** |**0.482**|**0.4968**|**0.5012**|
|
| 116 |
+
|
| 117 |
+
<img src="https://user-images.githubusercontent.com/38183241/194697387-218a1ea1-0863-4ea2-b8b4-339b95bdea7f.png" width="800px">
|
| 118 |
+
|
| 119 |
+
## Limitations and Biases
|
| 120 |
+
|
| 121 |
+
Polyglot-Ko has been trained to optimize next token prediction. Language models such as this are often used for a wide variety of tasks and it is important to be aware of possible unexpected outcomes. For instance, Polyglot-Ko will not always return the most factual or accurate response but the most statistically likely one. In addition, Polyglot may produce socially unacceptable or offensive content. We recommend having a human curator or other filtering mechanism to censor sensitive content.
|
| 122 |
+
|
| 123 |
+
## Citation and Related Information
|
| 124 |
+
### BibTeX entry
|
| 125 |
+
If you find our work useful, please consider citing:
|
| 126 |
+
```bibtex
|
| 127 |
+
@misc{polyglot-ko,
|
| 128 |
+
title = {{Polyglot-Ko: Open-Source Korean Autoregressive Language Model}},
|
| 129 |
+
author = {Ko, Hyunwoong and Yang, Kichang and Ryu, Minho and Kim, Taekyun and Yang, Seungmu and Hyun, jiwung and Park, Sungho},
|
| 130 |
+
url = {https://www.github.com/eleutherai/polyglot},
|
| 131 |
+
month = {9},
|
| 132 |
+
year = {2022},
|
| 133 |
+
}
|
| 134 |
+
```
|
| 135 |
+
|
| 136 |
+
### Licensing
|
| 137 |
+
All our models are licensed under the terms of the Apache License 2.0.
|
| 138 |
+
|
| 139 |
+
```
|
| 140 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 141 |
+
you may not use this file except in compliance with the License.
|
| 142 |
+
You may obtain a copy of the License at
|
| 143 |
+
|
| 144 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 145 |
+
|
| 146 |
+
Unless required by applicable law or agreed to in writing, software
|
| 147 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 148 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 149 |
+
See the License for the specific language governing permissions and
|
| 150 |
+
limitations under the License.
|
| 151 |
+
```
|
| 152 |
+
|
| 153 |
+
### Acknowledgement
|
| 154 |
+
|
| 155 |
+
This project was made possible thanks to the computing resources from [Stability.ai](https://stability.ai), and thanks to [TUNiB](https://tunib.ai) for providing a large-scale Korean dataset for this work.
|