Falah commited on
Commit
752eecd
·
verified ·
1 Parent(s): 46d3790

Upload QLoRA fine-tuned Mistral-7B model

Browse files
Files changed (4) hide show
  1. README.md +202 -92
  2. adapter_config.json +1 -1
  3. adapter_model.safetensors +2 -2
  4. tokenizer.json +16 -2
README.md CHANGED
@@ -1,97 +1,207 @@
1
  ---
 
 
 
2
  tags:
3
- - text-generation
 
4
  - transformers
5
- - peft
6
- - qlora
7
- - bitsandbytes
8
- - mistral
9
- - mistral-7b
10
- - fine-tune
11
- license: apache-2.0
12
  ---
13
 
14
- # my-qlora-mistral7b-instruct
15
-
16
- This is a **QLoRA fine-tuned** version of the [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) model.
17
- It was fine-tuned using **Low-Rank Adaptation (LoRA)** in 4-bit precision for efficiency on consumer GPUs.
18
-
19
- ## 🚀 Model Details
20
- - **Base model**: mistralai/Mistral-7B-Instruct-v0.2
21
- - **Fine-tuning method**: QLoRA with PEFT
22
- - **Quantization**: 4-bit (bitsandbytes)
23
- - **Task**: Instruction following / conversational AI
24
- - **Dataset**: Custom instruction-response pairs
25
- - **Training environment**: Google Colab Pro (T4 / A100 GPU)
26
-
27
- ## 📦 How to Use
28
- ```python
29
- # First, make sure you have the necessary libraries installed:
30
- # pip install transformers peft bitsandbytes accelerate
31
-
32
- import torch
33
- from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig
34
- from peft import PeftModel
35
- from accelerate import infer_auto_device_map, dispatch_model
36
-
37
- fine_tuned_model_id = "Falah/my-qlora-mistral7b-instruct"
38
- base_model_id = "mistralai/Mistral-7B-Instruct-v0.2"
39
-
40
- print("Loading tokenizer...")
41
- tokenizer = AutoTokenizer.from_pretrained(fine_tuned_model_id)
42
-
43
- print("Loading base model with quantization...")
44
- bnb_config = BitsAndBytesConfig(
45
- load_in_4bit=True,
46
- bnb_4bit_use_double_quant=True,
47
- bnb_4bit_quant_type="nf4",
48
- bnb_4bit_compute_dtype=torch.float16
49
- )
50
- base_model = AutoModelForCausalLM.from_pretrained(
51
- base_model_id,
52
- quantization_config=bnb_config,
53
- device_map=None, # Load to CPU initially
54
- torch_dtype=torch.float16,
55
- trust_remote_code=True,
56
- )
57
-
58
- print("Loading PEFT adapter onto the base model...")
59
- model = PeftModel.from_pretrained(base_model, fine_tuned_model_id)
60
-
61
- print("Dispatching model to devices...")
62
- device_map = infer_auto_device_map(model, dtype=torch.float16)
63
- model = dispatch_model(model, device_map=device_map)
64
-
65
- # Ensure the model is in evaluation mode
66
- model.eval()
67
-
68
- print("Creating text generation pipeline...")
69
- generator = pipeline(
70
- "text-generation",
71
- model=model,
72
- tokenizer=tokenizer,
73
- torch_dtype=torch.float16,
74
- device_map="auto",
75
- )
76
-
77
- # Define a sample user prompt
78
- user_prompt = "Write a short story about a robot learning to love."
79
-
80
- # Format the prompt
81
- formatted_prompt = f"[INST] {user_prompt} [/INST]"
82
-
83
- # Generate text
84
- outputs = generator(
85
- formatted_prompt,
86
- max_new_tokens=200,
87
- num_return_sequences=1,
88
- do_sample=True,
89
- temperature=0.7,
90
- top_k=50,
91
- top_p=0.95,
92
- )
93
-
94
- # Print the generated text
95
- for i, output in enumerate(outputs):
96
- print(f"Generated Output {i+1}:\n{output['generated_text']}")
97
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
  tags:
6
+ - base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2
7
+ - lora
8
  - transformers
 
 
 
 
 
 
 
9
  ---
10
 
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.17.0
adapter_config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "alpha_pattern": {},
3
  "auto_mapping": null,
4
- "base_model_name_or_path": null,
5
  "bias": "none",
6
  "corda_config": null,
7
  "eva_config": null,
 
1
  {
2
  "alpha_pattern": {},
3
  "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
5
  "bias": "none",
6
  "corda_config": null,
7
  "eva_config": null,
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3c40294bafc509c42538749fc7986131d8dd13f6a70cea003bb1e4a6cd653982
3
- size 27282328
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0880c8ed215895ee6f0c0e683f1c69aa86c485105ef0d7b2866b4332c4b4696d
3
+ size 27280152
tokenizer.json CHANGED
@@ -1,7 +1,21 @@
1
  {
2
  "version": "1.0",
3
- "truncation": null,
4
- "padding": null,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  "added_tokens": [
6
  {
7
  "id": 0,
 
1
  {
2
  "version": "1.0",
3
+ "truncation": {
4
+ "direction": "Right",
5
+ "max_length": 512,
6
+ "strategy": "LongestFirst",
7
+ "stride": 0
8
+ },
9
+ "padding": {
10
+ "strategy": {
11
+ "Fixed": 512
12
+ },
13
+ "direction": "Left",
14
+ "pad_to_multiple_of": null,
15
+ "pad_id": 2,
16
+ "pad_type_id": 0,
17
+ "pad_token": "</s>"
18
+ },
19
  "added_tokens": [
20
  {
21
  "id": 0,