--- license: mit base_model: - Wan-AI/Wan2.2-T2V-A14B-Diffusers - lightx2v/Wan2.2-Lightning pipeline_tag: text-to-video --- This model is a merger of [Wan-AI/Wan2.2-T2V-A14B-Diffusers](https://huggingface.co/Wan-AI/Wan2.2-T2V-A14B-Diffusers) and [Wan2.2-Lightning v1 model](https://huggingface.co/lightx2v/Wan2.2-Lightning/tree/main/Wan2.2-I2V-A14B-4steps-lora-rank64-Seko-V1), it can be run with diffusers pipeline. Running with [FastDM](https://github.com/KE-AI-ENG/FastDM): ``` python gen.py --model-path FastDM/Wan2.2-T2V-A14B-Merge-Lightning-V1.0-Diffusers --architecture wan --guidance-scale 1.0 --height 720 --width 1280 --steps 4 --use-fp8 --output-path ./wan-a14b-lightningv1.1-fp8-guid1.mp4 --num-frames 81 --fps 16 --prompts "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage." ``` Running with diffusers: ```python import torch import numpy as np from diffusers import WanPipeline, AutoencoderKLWan from diffusers.utils import export_to_video, load_image dtype = torch.bfloat16 device = "cuda:2" vae = AutoencoderKLWan.from_pretrained("FastDM/Wan2.2-T2V-A14B-Merge-Lightning-V1.0-Diffusers", subfolder="vae", torch_dtype=torch.float32) pipe = WanPipeline.from_pretrained("FastDM/Wan2.2-T2V-A14B-Merge-Lightning-V1.0-Diffusers", vae=vae, torch_dtype=dtype) pipe.to(device) height = 720 width = 1280 prompt = "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage." negative_prompt = "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走" output = pipe( prompt=prompt, negative_prompt=negative_prompt, height=height, width=width, num_frames=81, guidance_scale=1.0, num_inference_steps=4, ).frames[0] export_to_video(output, "t2v_out.mp4", fps=16) ```