import torch from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel from huggingface_hub import snapshot_download # === Base & adapter config === BASE_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" ADAPTER_PATH = "GilbertAkham/deepseek-R1-multitask-lora" # === System message === SYSTEM_PROMPT = ( "You are Chat-Bot, a helpful and logical assistant trained for reasoning, " "email, chatting, summarization, story continuation, and report writing.\n\n" ) class EndpointHandler: def __init__(self, path=""): print("🚀 Loading base model...") self.tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True) base_model = AutoModelForCausalLM.from_pretrained( BASE_MODEL, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True ) print(f"🔗 Downloading LoRA adapter from {ADAPTER_PATH}...") adapter_local_path = snapshot_download(repo_id=ADAPTER_PATH, allow_patterns=["*adapter*"]) print(f"📁 Adapter files cached at {adapter_local_path}") print("🧩 Attaching LoRA adapter...") self.model = PeftModel.from_pretrained(base_model, adapter_local_path) self.model.eval() print("✅ Model + LoRA adapter loaded successfully.") def __call__(self, data): # === Combine system + user prompt === user_prompt = data.get("inputs", "") full_prompt = SYSTEM_PROMPT + user_prompt params = data.get("parameters", {}) max_new_tokens = params.get("max_new_tokens", 512) temperature = params.get("temperature", 0.7) top_p = params.get("top_p", 0.9) # === Tokenize and run generation === inputs = self.tokenizer(full_prompt, return_tensors="pt").to(self.model.device) with torch.no_grad(): outputs = self.model.generate( **inputs, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, do_sample=True, pad_token_id=self.tokenizer.eos_token_id, eos_token_id=self.tokenizer.eos_token_id, ) # === Decode and strip system message === text = self.tokenizer.decode(outputs[0], skip_special_tokens=True) if text.startswith(SYSTEM_PROMPT): text = text[len(SYSTEM_PROMPT):].strip() return {"generated_text": text}