|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ PyTorch Siglip model. """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | import os | 
					
						
						|  | import warnings | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  | from typing import Optional | 
					
						
						|  | from typing import Tuple | 
					
						
						|  | from typing import Union | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn.init import _calculate_fan_in_and_fan_out | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.configuration_utils import PretrainedConfig | 
					
						
						|  | from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask | 
					
						
						|  | from transformers.modeling_outputs import BaseModelOutput | 
					
						
						|  | from transformers.modeling_outputs import BaseModelOutputWithPooling | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.utils import add_start_docstrings | 
					
						
						|  | from transformers.utils import add_start_docstrings_to_model_forward | 
					
						
						|  | from transformers.utils import is_flash_attn_2_available | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  | from transformers.utils import ModelOutput | 
					
						
						|  | from transformers.utils import replace_return_docstrings | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SiglipVisionConfig(PretrainedConfig): | 
					
						
						|  | r""" | 
					
						
						|  | This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a | 
					
						
						|  | Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a | 
					
						
						|  | configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip | 
					
						
						|  | [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. | 
					
						
						|  | Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
						
						|  | documentation from [`PretrainedConfig`] for more information. | 
					
						
						|  | Args: | 
					
						
						|  | hidden_size (`int`, *optional*, defaults to 768): | 
					
						
						|  | Dimensionality of the encoder layers and the pooler layer. | 
					
						
						|  | intermediate_size (`int`, *optional*, defaults to 3072): | 
					
						
						|  | Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | 
					
						
						|  | num_hidden_layers (`int`, *optional*, defaults to 12): | 
					
						
						|  | Number of hidden layers in the Transformer encoder. | 
					
						
						|  | num_attention_heads (`int`, *optional*, defaults to 12): | 
					
						
						|  | Number of attention heads for each attention layer in the Transformer encoder. | 
					
						
						|  | num_channels (`int`, *optional*, defaults to 3): | 
					
						
						|  | Number of channels in the input images. | 
					
						
						|  | image_size (`int`, *optional*, defaults to 224): | 
					
						
						|  | The size (resolution) of each image. | 
					
						
						|  | patch_size (`int`, *optional*, defaults to 16): | 
					
						
						|  | The size (resolution) of each patch. | 
					
						
						|  | hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): | 
					
						
						|  | The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | 
					
						
						|  | `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. | 
					
						
						|  | layer_norm_eps (`float`, *optional*, defaults to 1e-06): | 
					
						
						|  | The epsilon used by the layer normalization layers. | 
					
						
						|  | attention_dropout (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | The dropout ratio for the attention probabilities. | 
					
						
						|  | Example: | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import SiglipVisionConfig, SiglipVisionModel | 
					
						
						|  | >>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration | 
					
						
						|  | >>> configuration = SiglipVisionConfig() | 
					
						
						|  | >>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration | 
					
						
						|  | >>> model = SiglipVisionModel(configuration) | 
					
						
						|  | >>> # Accessing the model configuration | 
					
						
						|  | >>> configuration = model.config | 
					
						
						|  | ```""" | 
					
						
						|  |  | 
					
						
						|  | model_type = "siglip_vision_model" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | hidden_size=768, | 
					
						
						|  | intermediate_size=3072, | 
					
						
						|  | num_hidden_layers=12, | 
					
						
						|  | num_attention_heads=12, | 
					
						
						|  | num_channels=3, | 
					
						
						|  | image_size=224, | 
					
						
						|  | patch_size=16, | 
					
						
						|  | hidden_act="gelu_pytorch_tanh", | 
					
						
						|  | layer_norm_eps=1e-6, | 
					
						
						|  | attention_dropout=0.0, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__(**kwargs) | 
					
						
						|  |  | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | self.intermediate_size = intermediate_size | 
					
						
						|  | self.num_hidden_layers = num_hidden_layers | 
					
						
						|  | self.num_attention_heads = num_attention_heads | 
					
						
						|  | self.num_channels = num_channels | 
					
						
						|  | self.patch_size = patch_size | 
					
						
						|  | self.image_size = image_size | 
					
						
						|  | self.attention_dropout = attention_dropout | 
					
						
						|  | self.layer_norm_eps = layer_norm_eps | 
					
						
						|  | self.hidden_act = hidden_act | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | 
					
						
						|  | cls._set_token_in_kwargs(kwargs) | 
					
						
						|  |  | 
					
						
						|  | config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if config_dict.get("model_type") == "siglip": | 
					
						
						|  | config_dict = config_dict["vision_config"] | 
					
						
						|  |  | 
					
						
						|  | if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | 
					
						
						|  | f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return cls.from_dict(config_dict, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224" | 
					
						
						|  |  | 
					
						
						|  | SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ | 
					
						
						|  | "google/siglip-base-patch16-224", | 
					
						
						|  |  | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | if is_flash_attn_2_available(): | 
					
						
						|  | from flash_attn import flash_attn_func | 
					
						
						|  | from flash_attn import flash_attn_varlen_func | 
					
						
						|  | from flash_attn.bert_padding import index_first_axis | 
					
						
						|  | from flash_attn.bert_padding import pad_input | 
					
						
						|  | from flash_attn.bert_padding import unpad_input | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_unpad_data(attention_mask): | 
					
						
						|  | seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | 
					
						
						|  | indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | 
					
						
						|  | max_seqlen_in_batch = seqlens_in_batch.max().item() | 
					
						
						|  | cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) | 
					
						
						|  | return ( | 
					
						
						|  | indices, | 
					
						
						|  | cu_seqlens, | 
					
						
						|  | max_seqlen_in_batch, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _trunc_normal_(tensor, mean, std, a, b): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def norm_cdf(x): | 
					
						
						|  |  | 
					
						
						|  | return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 | 
					
						
						|  |  | 
					
						
						|  | if (mean < a - 2 * std) or (mean > b + 2 * std): | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | 
					
						
						|  | "The distribution of values may be incorrect.", | 
					
						
						|  | stacklevel=2, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | l = norm_cdf((a - mean) / std) | 
					
						
						|  | u = norm_cdf((b - mean) / std) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tensor.uniform_(2 * l - 1, 2 * u - 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if tensor.dtype in [torch.float16, torch.bfloat16]: | 
					
						
						|  |  | 
					
						
						|  | og_dtype = tensor.dtype | 
					
						
						|  | tensor = tensor.to(torch.float32) | 
					
						
						|  | tensor.erfinv_() | 
					
						
						|  | tensor = tensor.to(og_dtype) | 
					
						
						|  | else: | 
					
						
						|  | tensor.erfinv_() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tensor.mul_(std * math.sqrt(2.0)) | 
					
						
						|  | tensor.add_(mean) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if tensor.dtype == torch.float16: | 
					
						
						|  |  | 
					
						
						|  | tensor = tensor.to(torch.float32) | 
					
						
						|  | tensor.clamp_(min=a, max=b) | 
					
						
						|  | tensor = tensor.to(torch.float16) | 
					
						
						|  | else: | 
					
						
						|  | tensor.clamp_(min=a, max=b) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def trunc_normal_tf_( | 
					
						
						|  | tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0 | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | """Fills the input Tensor with values drawn from a truncated | 
					
						
						|  | normal distribution. The values are effectively drawn from the | 
					
						
						|  | normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)` | 
					
						
						|  | with values outside :math:`[a, b]` redrawn until they are within | 
					
						
						|  | the bounds. The method used for generating the random values works | 
					
						
						|  | best when :math:`a \\leq \text{mean} \\leq b`. | 
					
						
						|  | NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the | 
					
						
						|  | bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 | 
					
						
						|  | and the result is subsquently scaled and shifted by the mean and std args. | 
					
						
						|  | Args: | 
					
						
						|  | tensor: an n-dimensional `torch.Tensor` | 
					
						
						|  | mean: the mean of the normal distribution | 
					
						
						|  | std: the standard deviation of the normal distribution | 
					
						
						|  | a: the minimum cutoff value | 
					
						
						|  | b: the maximum cutoff value | 
					
						
						|  | """ | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | _trunc_normal_(tensor, 0, 1.0, a, b) | 
					
						
						|  | tensor.mul_(std).add_(mean) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): | 
					
						
						|  | fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) | 
					
						
						|  | if mode == "fan_in": | 
					
						
						|  | denom = fan_in | 
					
						
						|  | elif mode == "fan_out": | 
					
						
						|  | denom = fan_out | 
					
						
						|  | elif mode == "fan_avg": | 
					
						
						|  | denom = (fan_in + fan_out) / 2 | 
					
						
						|  |  | 
					
						
						|  | variance = scale / denom | 
					
						
						|  |  | 
					
						
						|  | if distribution == "truncated_normal": | 
					
						
						|  |  | 
					
						
						|  | trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978) | 
					
						
						|  | elif distribution == "normal": | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | tensor.normal_(std=math.sqrt(variance)) | 
					
						
						|  | elif distribution == "uniform": | 
					
						
						|  | bound = math.sqrt(3 * variance) | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | tensor.uniform_(-bound, bound) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"invalid distribution {distribution}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def lecun_normal_(tensor): | 
					
						
						|  | variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def default_flax_embed_init(tensor): | 
					
						
						|  | variance_scaling_(tensor, mode="fan_in", distribution="normal") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  |  | 
					
						
						|  | class SiglipVisionModelOutput(ModelOutput): | 
					
						
						|  | """ | 
					
						
						|  | Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. | 
					
						
						|  | Args: | 
					
						
						|  | image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): | 
					
						
						|  | The image embeddings obtained by applying the projection layer to the pooler_output. | 
					
						
						|  | last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | 
					
						
						|  | Sequence of hidden-states at the output of the last layer of the model. | 
					
						
						|  | hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | 
					
						
						|  | one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | 
					
						
						|  | Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | 
					
						
						|  | attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | 
					
						
						|  | sequence_length)`. | 
					
						
						|  | Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | 
					
						
						|  | heads. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | image_embeds: Optional[torch.FloatTensor] = None | 
					
						
						|  | last_hidden_state: torch.FloatTensor = None | 
					
						
						|  | hidden_states: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  | attentions: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SiglipVisionEmbeddings(nn.Module): | 
					
						
						|  | def __init__(self, config: SiglipVisionConfig): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.embed_dim = config.hidden_size | 
					
						
						|  | self.image_size = config.image_size | 
					
						
						|  | self.patch_size = config.patch_size | 
					
						
						|  |  | 
					
						
						|  | self.patch_embedding = nn.Conv2d( | 
					
						
						|  | in_channels=config.num_channels, | 
					
						
						|  | out_channels=self.embed_dim, | 
					
						
						|  | kernel_size=self.patch_size, | 
					
						
						|  | stride=self.patch_size, | 
					
						
						|  | padding="valid", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.num_patches_per_side = self.image_size // self.patch_size | 
					
						
						|  | self.num_patches = self.num_patches_per_side**2 | 
					
						
						|  | self.num_positions = self.num_patches | 
					
						
						|  | self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | pixel_values: torch.FloatTensor, | 
					
						
						|  | patch_attention_mask: torch.BoolTensor, | 
					
						
						|  | tgt_sizes: Optional[torch.IntTensor] = None, | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | batch_size = pixel_values.size(0) | 
					
						
						|  |  | 
					
						
						|  | patch_embeds = self.patch_embedding(pixel_values) | 
					
						
						|  | embeddings = patch_embeds.flatten(2).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | max_im_h, max_im_w = pixel_values.size(2), pixel_values.size(3) | 
					
						
						|  | max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size | 
					
						
						|  | boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side) | 
					
						
						|  | position_ids = torch.full( | 
					
						
						|  | size=( | 
					
						
						|  | batch_size, | 
					
						
						|  | max_nb_patches_h * max_nb_patches_w, | 
					
						
						|  | ), | 
					
						
						|  | fill_value=0, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for batch_idx, p_attn_mask in enumerate(patch_attention_mask): | 
					
						
						|  | if tgt_sizes is not None: | 
					
						
						|  | nb_patches_h = tgt_sizes[batch_idx][0] | 
					
						
						|  | nb_patches_w = tgt_sizes[batch_idx][1] | 
					
						
						|  | else: | 
					
						
						|  | nb_patches_h = p_attn_mask[:, 0].sum() | 
					
						
						|  | nb_patches_w = p_attn_mask[0].sum() | 
					
						
						|  |  | 
					
						
						|  | fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h) | 
					
						
						|  | fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w) | 
					
						
						|  |  | 
					
						
						|  | bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True) | 
					
						
						|  | bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True) | 
					
						
						|  |  | 
					
						
						|  | pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten() | 
					
						
						|  | position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids | 
					
						
						|  |  | 
					
						
						|  | position_ids = position_ids.to(self.position_embedding.weight.device) | 
					
						
						|  |  | 
					
						
						|  | embeddings = embeddings + self.position_embedding(position_ids) | 
					
						
						|  | return embeddings | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SiglipAttention(nn.Module): | 
					
						
						|  | """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.embed_dim = config.hidden_size | 
					
						
						|  | self.num_heads = config.num_attention_heads | 
					
						
						|  | self.head_dim = self.embed_dim // self.num_heads | 
					
						
						|  | if self.head_dim * self.num_heads != self.embed_dim: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | 
					
						
						|  | f" {self.num_heads})." | 
					
						
						|  | ) | 
					
						
						|  | self.scale = self.head_dim**-0.5 | 
					
						
						|  | self.dropout = config.attention_dropout | 
					
						
						|  |  | 
					
						
						|  | self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) | 
					
						
						|  | self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) | 
					
						
						|  | self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) | 
					
						
						|  | self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | """Input shape: Batch x Time x Channel""" | 
					
						
						|  |  | 
					
						
						|  | batch_size, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | query_states = self.q_proj(hidden_states) | 
					
						
						|  | key_states = self.k_proj(hidden_states) | 
					
						
						|  | value_states = self.v_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | k_v_seq_len = key_states.shape[-2] | 
					
						
						|  | attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale | 
					
						
						|  |  | 
					
						
						|  | if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is" | 
					
						
						|  | f" {attn_weights.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}" | 
					
						
						|  | ) | 
					
						
						|  | attn_weights = attn_weights + attention_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | 
					
						
						|  | attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | 
					
						
						|  | attn_output = torch.matmul(attn_weights, value_states) | 
					
						
						|  |  | 
					
						
						|  | if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is" | 
					
						
						|  | f" {attn_output.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  | attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.out_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SiglipFlashAttention2(SiglipAttention): | 
					
						
						|  | """ | 
					
						
						|  | Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays | 
					
						
						|  | untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | 
					
						
						|  | flash attention and deal with padding tokens in case the input contains any of them. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, *args, **kwargs): | 
					
						
						|  | super().__init__(*args, **kwargs) | 
					
						
						|  | self.is_causal = False | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | output_attentions = False | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | query_states = self.q_proj(hidden_states) | 
					
						
						|  | key_states = self.k_proj(hidden_states) | 
					
						
						|  | value_states = self.v_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.transpose(1, 2) | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | dropout_rate = self.dropout if self.training else 0.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_dtype = query_states.dtype | 
					
						
						|  | if input_dtype == torch.float32: | 
					
						
						|  | if torch.is_autocast_enabled(): | 
					
						
						|  | target_dtype = torch.get_autocast_gpu_dtype() | 
					
						
						|  |  | 
					
						
						|  | elif hasattr(self.config, "_pre_quantization_dtype"): | 
					
						
						|  | target_dtype = self.config._pre_quantization_dtype | 
					
						
						|  | else: | 
					
						
						|  | target_dtype = self.q_proj.weight.dtype | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "The input hidden states seems to be silently casted in float32, this might be related to the fact" | 
					
						
						|  | " you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | 
					
						
						|  | f" {target_dtype}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.to(target_dtype) | 
					
						
						|  | key_states = key_states.to(target_dtype) | 
					
						
						|  | value_states = value_states.to(target_dtype) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self._flash_attention_forward( | 
					
						
						|  | query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous() | 
					
						
						|  | attn_output = self.out_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights | 
					
						
						|  |  | 
					
						
						|  | def _flash_attention_forward( | 
					
						
						|  | self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | 
					
						
						|  | first unpad the input, then computes the attention scores and pad the final attention scores. | 
					
						
						|  | Args: | 
					
						
						|  | query_states (`torch.Tensor`): | 
					
						
						|  | Input query states to be passed to Flash Attention API | 
					
						
						|  | key_states (`torch.Tensor`): | 
					
						
						|  | Input key states to be passed to Flash Attention API | 
					
						
						|  | value_states (`torch.Tensor`): | 
					
						
						|  | Input value states to be passed to Flash Attention API | 
					
						
						|  | attention_mask (`torch.Tensor`): | 
					
						
						|  | The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | 
					
						
						|  | position of padding tokens and 1 for the position of non-padding tokens. | 
					
						
						|  | dropout (`int`, *optional*): | 
					
						
						|  | Attention dropout | 
					
						
						|  | softmax_scale (`float`, *optional*): | 
					
						
						|  | The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | causal = self.is_causal and query_length != 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | batch_size = query_states.shape[0] | 
					
						
						|  | query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | 
					
						
						|  | query_states, key_states, value_states, attention_mask, query_length | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | cu_seqlens_q, cu_seqlens_k = cu_seq_lens | 
					
						
						|  | max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | 
					
						
						|  |  | 
					
						
						|  | attn_output_unpad = flash_attn_varlen_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | cu_seqlens_q=cu_seqlens_q, | 
					
						
						|  | cu_seqlens_k=cu_seqlens_k, | 
					
						
						|  | max_seqlen_q=max_seqlen_in_batch_q, | 
					
						
						|  | max_seqlen_k=max_seqlen_in_batch_k, | 
					
						
						|  | dropout_p=dropout, | 
					
						
						|  | softmax_scale=softmax_scale, | 
					
						
						|  | causal=causal, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | 
					
						
						|  | else: | 
					
						
						|  | attn_output = flash_attn_func( | 
					
						
						|  | query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return attn_output | 
					
						
						|  |  | 
					
						
						|  | def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | 
					
						
						|  | indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | 
					
						
						|  | batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | 
					
						
						|  |  | 
					
						
						|  | key_layer = index_first_axis( | 
					
						
						|  | key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | 
					
						
						|  | ) | 
					
						
						|  | value_layer = index_first_axis( | 
					
						
						|  | value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | 
					
						
						|  | ) | 
					
						
						|  | if query_length == kv_seq_len: | 
					
						
						|  | query_layer = index_first_axis( | 
					
						
						|  | query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k | 
					
						
						|  | ) | 
					
						
						|  | cu_seqlens_q = cu_seqlens_k | 
					
						
						|  | max_seqlen_in_batch_q = max_seqlen_in_batch_k | 
					
						
						|  | indices_q = indices_k | 
					
						
						|  | elif query_length == 1: | 
					
						
						|  | max_seqlen_in_batch_q = 1 | 
					
						
						|  | cu_seqlens_q = torch.arange( | 
					
						
						|  | batch_size + 1, dtype=torch.int32, device=query_layer.device | 
					
						
						|  | ) | 
					
						
						|  | indices_q = cu_seqlens_q[:-1] | 
					
						
						|  | query_layer = query_layer.squeeze(1) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask[:, -query_length:] | 
					
						
						|  | query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | query_layer, | 
					
						
						|  | key_layer, | 
					
						
						|  | value_layer, | 
					
						
						|  | indices_q, | 
					
						
						|  | (cu_seqlens_q, cu_seqlens_k), | 
					
						
						|  | (max_seqlen_in_batch_q, max_seqlen_in_batch_k), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SiglipMLP(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.activation_fn = ACT2FN[config.hidden_act] | 
					
						
						|  | self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | 
					
						
						|  | self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | hidden_states = self.fc1(hidden_states) | 
					
						
						|  | hidden_states = self.activation_fn(hidden_states) | 
					
						
						|  | hidden_states = self.fc2(hidden_states) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SiglipEncoderLayer(nn.Module): | 
					
						
						|  | def __init__(self, config: SiglipVisionConfig): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.embed_dim = config.hidden_size | 
					
						
						|  | self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | 
					
						
						|  | self.self_attn = SiglipAttention(config) if not self._use_flash_attention_2 else SiglipFlashAttention2(config) | 
					
						
						|  | self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | 
					
						
						|  | self.mlp = SiglipMLP(config) | 
					
						
						|  | self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: torch.Tensor, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor]: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.FloatTensor`): | 
					
						
						|  | Input to the layer of shape `(batch, seq_len, embed_dim)`. | 
					
						
						|  | attention_mask (`torch.FloatTensor`): | 
					
						
						|  | Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. | 
					
						
						|  | output_attentions (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | """ | 
					
						
						|  | residual = hidden_states | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.layer_norm1(hidden_states) | 
					
						
						|  | hidden_states, attn_weights = self.self_attn( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.layer_norm2(hidden_states) | 
					
						
						|  | hidden_states = self.mlp(hidden_states) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  | outputs = (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs += (attn_weights,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SiglipPreTrainedModel(PreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | 
					
						
						|  | models. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | config_class = SiglipVisionConfig | 
					
						
						|  | base_model_prefix = "siglip" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | """Initialize the weights""" | 
					
						
						|  |  | 
					
						
						|  | if isinstance(module, SiglipVisionEmbeddings): | 
					
						
						|  | width = self.config.hidden_size | 
					
						
						|  | nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width)) | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | default_flax_embed_init(module.weight) | 
					
						
						|  | elif isinstance(module, SiglipAttention): | 
					
						
						|  | nn.init.normal_(module.q_proj.weight) | 
					
						
						|  | nn.init.normal_(module.k_proj.weight) | 
					
						
						|  | nn.init.normal_(module.v_proj.weight) | 
					
						
						|  | nn.init.normal_(module.out_proj.weight) | 
					
						
						|  | nn.init.zeros_(module.q_proj.bias) | 
					
						
						|  | nn.init.zeros_(module.k_proj.bias) | 
					
						
						|  | nn.init.zeros_(module.v_proj.bias) | 
					
						
						|  | nn.init.zeros_(module.out_proj.bias) | 
					
						
						|  | elif isinstance(module, SiglipMLP): | 
					
						
						|  | nn.init.normal_(module.fc1.weight) | 
					
						
						|  | nn.init.normal_(module.fc2.weight) | 
					
						
						|  | nn.init.normal_(module.fc1.bias, std=1e-6) | 
					
						
						|  | nn.init.normal_(module.fc2.bias, std=1e-6) | 
					
						
						|  | elif isinstance(module, (nn.Linear, nn.Conv2d)): | 
					
						
						|  | lecun_normal_(module.weight) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | nn.init.zeros_(module.bias) | 
					
						
						|  | elif isinstance(module, nn.LayerNorm): | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | module.weight.data.fill_(1.0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | SIGLIP_START_DOCSTRING = r""" | 
					
						
						|  | This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
						
						|  | etc.) | 
					
						
						|  | This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
						
						|  | Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
						
						|  | and behavior. | 
					
						
						|  | Parameters: | 
					
						
						|  | config ([`SiglipVisionConfig`]): Model configuration class with all the parameters of the model. | 
					
						
						|  | Initializing with a config file does not load the weights associated with the model, only the | 
					
						
						|  | configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | SIGLIP_VISION_INPUTS_DOCSTRING = r""" | 
					
						
						|  | Args: | 
					
						
						|  | pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | 
					
						
						|  | Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using | 
					
						
						|  | [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
						
						|  | tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
						
						|  | more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SiglipEncoder(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | 
					
						
						|  | [`SiglipEncoderLayer`]. | 
					
						
						|  | Args: | 
					
						
						|  | config: SiglipConfig | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: SiglipVisionConfig): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | inputs_embeds, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, BaseModelOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | Args: | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | 
					
						
						|  | This is useful if you want more control over how to convert `input_ids` indices into associated vectors | 
					
						
						|  | than the model's internal embedding lookup matrix. | 
					
						
						|  | attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | 
					
						
						|  | for more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | """ | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | encoder_states = () if output_hidden_states else None | 
					
						
						|  | all_attentions = () if output_attentions else None | 
					
						
						|  |  | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  | for encoder_layer in self.layers: | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | encoder_states = encoder_states + (hidden_states,) | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | layer_outputs = self._gradient_checkpointing_func( | 
					
						
						|  | encoder_layer.__call__, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = encoder_layer( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_attentions = all_attentions + (layer_outputs[1],) | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | encoder_states = encoder_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | 
					
						
						|  | return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings("""The vision model from SigLIP without any head or projection on top.""", SIGLIP_START_DOCSTRING) | 
					
						
						|  | class SiglipVisionTransformer(SiglipPreTrainedModel): | 
					
						
						|  | config_class = SiglipVisionConfig | 
					
						
						|  | main_input_name = "pixel_values" | 
					
						
						|  | _supports_flash_attn_2 = True | 
					
						
						|  | _no_split_modules = [] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: SiglipVisionConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.config = config | 
					
						
						|  | embed_dim = config.hidden_size | 
					
						
						|  |  | 
					
						
						|  | self.embeddings = SiglipVisionEmbeddings(config) | 
					
						
						|  | self.encoder = SiglipEncoder(config) | 
					
						
						|  | self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | 
					
						
						|  | self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self) -> nn.Module: | 
					
						
						|  | return self.embeddings.patch_embedding | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING) | 
					
						
						|  | @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | pixel_values, | 
					
						
						|  | patch_attention_mask: Optional[torch.BoolTensor] = None, | 
					
						
						|  | tgt_sizes: Optional[torch.IntTensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, BaseModelOutputWithPooling]: | 
					
						
						|  | r""" | 
					
						
						|  | Returns: | 
					
						
						|  | """ | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | batch_size = pixel_values.size(0) | 
					
						
						|  | if patch_attention_mask is None: | 
					
						
						|  | patch_attention_mask = torch.ones( | 
					
						
						|  | size=( | 
					
						
						|  | batch_size, | 
					
						
						|  | pixel_values.size(2) // self.config.patch_size, | 
					
						
						|  | pixel_values.size(3) // self.config.patch_size, | 
					
						
						|  | ), | 
					
						
						|  | dtype=torch.bool, | 
					
						
						|  | device=pixel_values.device, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.embeddings( | 
					
						
						|  | pixel_values=pixel_values, patch_attention_mask=patch_attention_mask, tgt_sizes=tgt_sizes | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | patch_attention_mask = patch_attention_mask.view(batch_size, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not torch.any(~patch_attention_mask): | 
					
						
						|  | attention_mask = None | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = ( | 
					
						
						|  | _prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype) | 
					
						
						|  | if not self._use_flash_attention_2 | 
					
						
						|  | else patch_attention_mask | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | encoder_outputs = self.encoder( | 
					
						
						|  | inputs_embeds=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | last_hidden_state = encoder_outputs[0] | 
					
						
						|  | last_hidden_state = self.post_layernorm(last_hidden_state) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (last_hidden_state, None) + encoder_outputs[1:] | 
					
						
						|  |  | 
					
						
						|  | return BaseModelOutputWithPooling( | 
					
						
						|  | last_hidden_state=last_hidden_state, | 
					
						
						|  | pooler_output=None, | 
					
						
						|  | hidden_states=encoder_outputs.hidden_states, | 
					
						
						|  | attentions=encoder_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  |