--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-1b tags: - generated_from_trainer model-index: - name: wav2vec2-1b-E10_freq_pause results: [] --- # wav2vec2-1b-E10_freq_pause This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7622 - Cer: 19.5371 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 8.7376 | 0.2580 | 200 | 4.2865 | 79.6581 | | 1.9384 | 0.5160 | 400 | 2.1712 | 51.7211 | | 1.2999 | 0.7741 | 600 | 2.0590 | 47.0688 | | 1.086 | 1.0321 | 800 | 1.3574 | 34.8214 | | 0.8407 | 1.2901 | 1000 | 1.3538 | 32.7244 | | 0.7729 | 1.5481 | 1200 | 1.2432 | 30.6450 | | 0.693 | 1.8062 | 1400 | 1.0388 | 27.3026 | | 0.5904 | 2.0642 | 1600 | 1.1171 | 28.5597 | | 0.4983 | 2.3222 | 1800 | 1.0724 | 27.1323 | | 0.4467 | 2.5802 | 2000 | 0.9789 | 27.1910 | | 0.4194 | 2.8383 | 2200 | 0.9319 | 24.7533 | | 0.37 | 3.0963 | 2400 | 0.8807 | 22.3802 | | 0.3058 | 3.3543 | 2600 | 0.8707 | 22.7737 | | 0.2883 | 3.6123 | 2800 | 0.8241 | 21.1349 | | 0.2757 | 3.8703 | 3000 | 0.7938 | 20.4535 | | 0.2276 | 4.1284 | 3200 | 0.8549 | 21.4344 | | 0.2027 | 4.3864 | 3400 | 0.7780 | 19.9542 | | 0.18 | 4.6444 | 3600 | 0.7515 | 19.2258 | | 0.1783 | 4.9024 | 3800 | 0.7622 | 19.5371 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1.post100 - Datasets 2.19.1 - Tokenizers 0.20.1