SentenceTransformer based on sentence-transformers/LaBSE
This is a sentence-transformers model finetuned from sentence-transformers/LaBSE. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/LaBSE
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'ӈэнчьачакыгэт, ӈэнчьачакэттомгын',
'Младшая сестра',
'наконечник гарпуна',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 69,231 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 9.36 tokens
- max: 93 tokens
- min: 3 tokens
- mean: 10.03 tokens
- max: 97 tokens
- min: 1.0
- mean: 1.0
- max: 1.0
- Samples:
sentence_0 sentence_1 label ныкынмаԓьавстремящийся быть вместе, неразлучный1.0ОвчелгымоллымолТемнокрасная кровь1.0Ӈаанракэн ыпычьын кытыԓьынТого дома основа крепкая1.0 - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsnum_train_epochs: 1fp16: Truemulti_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 8per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0116 | 100 | - |
| 0.0231 | 200 | - |
| 0.0347 | 300 | - |
| 0.0462 | 400 | - |
| 0.0578 | 500 | 1.6601 |
| 0.0693 | 600 | - |
| 0.0809 | 700 | - |
| 0.0924 | 800 | - |
| 0.1040 | 900 | - |
| 0.1156 | 1000 | 1.1117 |
| 0.1271 | 1100 | - |
| 0.1387 | 1200 | - |
| 0.1502 | 1300 | - |
| 0.1618 | 1400 | - |
| 0.1733 | 1500 | 1.0037 |
| 0.1849 | 1600 | - |
| 0.1964 | 1700 | - |
| 0.2080 | 1800 | - |
| 0.2196 | 1900 | - |
| 0.2311 | 2000 | 0.9463 |
| 0.2427 | 2100 | - |
| 0.2542 | 2200 | - |
| 0.2658 | 2300 | - |
| 0.2773 | 2400 | - |
| 0.2889 | 2500 | 0.9152 |
| 0.3004 | 2600 | - |
| 0.3120 | 2700 | - |
| 0.3235 | 2800 | - |
| 0.3351 | 2900 | - |
| 0.3467 | 3000 | 0.8957 |
| 0.3582 | 3100 | - |
| 0.3698 | 3200 | - |
| 0.3813 | 3300 | - |
| 0.3929 | 3400 | - |
| 0.4044 | 3500 | 0.8696 |
| 0.4160 | 3600 | - |
| 0.4275 | 3700 | - |
| 0.4391 | 3800 | - |
| 0.4507 | 3900 | - |
| 0.4622 | 4000 | 0.8815 |
| 0.4738 | 4100 | - |
| 0.4853 | 4200 | - |
| 0.4969 | 4300 | - |
| 0.5084 | 4400 | - |
| 0.5200 | 4500 | 0.8265 |
| 0.5315 | 4600 | - |
| 0.5431 | 4700 | - |
| 0.5547 | 4800 | - |
| 0.5662 | 4900 | - |
| 0.5778 | 5000 | 0.8057 |
| 0.5893 | 5100 | - |
| 0.6009 | 5200 | - |
| 0.6124 | 5300 | - |
| 0.6240 | 5400 | - |
| 0.6355 | 5500 | 0.7754 |
| 0.6471 | 5600 | - |
| 0.6587 | 5700 | - |
| 0.6702 | 5800 | - |
| 0.6818 | 5900 | - |
| 0.6933 | 6000 | 0.8078 |
| 0.7049 | 6100 | - |
| 0.7164 | 6200 | - |
| 0.7280 | 6300 | - |
| 0.7395 | 6400 | - |
| 0.7511 | 6500 | 0.7371 |
| 0.7627 | 6600 | - |
| 0.7742 | 6700 | - |
| 0.7858 | 6800 | - |
| 0.7973 | 6900 | - |
| 0.8089 | 7000 | 0.7199 |
| 0.8204 | 7100 | - |
| 0.8320 | 7200 | - |
| 0.8435 | 7300 | - |
| 0.8551 | 7400 | - |
| 0.8667 | 7500 | 0.7494 |
| 0.8782 | 7600 | - |
| 0.8898 | 7700 | - |
| 0.9013 | 7800 | - |
| 0.9129 | 7900 | - |
| 0.9244 | 8000 | 0.7481 |
| 0.9360 | 8100 | - |
| 0.9475 | 8200 | - |
| 0.9591 | 8300 | - |
| 0.9706 | 8400 | - |
| 0.9822 | 8500 | 0.7768 |
| 0.9938 | 8600 | - |
| 1.0 | 8654 | - |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.52.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 2.14.4
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Model tree for HSE-Chukchi-NLP/LaBSE-russian-chukchi
Base model
sentence-transformers/LaBSE