JSSP LLaMA 8B Fine-tuned Model

Model Description

이 λͺ¨λΈμ€ Job Shop Scheduling Problem (JSSP) μ΅œμ ν™”λ₯Ό μœ„ν•΄ νŒŒμΈνŠœλ‹λœ LLaMA 8B λͺ¨λΈμž…λ‹ˆλ‹€. inference_jssp_fssp.pyμ—μ„œ λ°”λ‘œ μ‚¬μš©ν•  수 μžˆλ„λ‘ μ΅œμ ν™”λ˜μ—ˆμŠ΅λ‹ˆλ‹€.

Training Details

  • Base Model: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit
  • Fine-tuning Method: LoRA (Low-Rank Adaptation)
  • LoRA Rank: 64
  • Training Epochs: 4
  • Max Sequence Length: 40,000 tokens
  • Dataset: ACCORD JSSP dataset
  • Training Framework: Unsloth + HuggingFace Transformers

Usage (inference_jssp_fssp.py μŠ€νƒ€μΌ)

from unsloth import FastLanguageModel
import torch

# 1. λͺ¨λΈ λ‘œλ“œ (inference_jssp_fssp.py와 동일)
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name="HYUNJINI/jssp_llama8b_accord_r64_ep4",
    max_seq_length=40000,  # JSSP 문제 처리λ₯Ό μœ„ν•œ κΈ΄ μ‹œν€€μŠ€
    load_in_4bit=True,
    dtype=torch.bfloat16,
)

# 2. μΆ”λ‘  λͺ¨λ“œ μ„€μ •
FastLanguageModel.for_inference(model)

# 3. JSSP 문제 μΆ”λ‘ 
from solution_generation_english import generate_multiple_solutions

# JSSP 문제 데이터 μ€€λΉ„
jssp_problem = "..."  # λ‹Ήμ‹ μ˜ JSSP 문제
inst_for_ortools = [...] # 문제 맀트릭슀

# μ†”λ£¨μ…˜ 생성
best_gap, is_feasible_list, gap_list, _, calculated_makespan_list, time_list, initial_solutions, recalculated_solutions, _, _ = generate_multiple_solutions(
    model=model,
    tokenizer=tokenizer,
    jssp_problem=jssp_problem,
    inst_for_ortools=inst_for_ortools,
    real_makespan=optimal_makespan,
    dev_map="cuda:0",
    sample=True,
    num_solutions=10,
    top_k=50,
    top_p=0.95,
    temperature=1.0,
    max_len=40000,
    reflexion_iterations=0,
    enable_improvement=False
)

Model Performance

  • ν•™μŠ΅ 데이터: ACCORD λ°μ΄ν„°μ…‹μ˜ JSSP λ¬Έμ œλ“€
  • 좜λ ₯ ν˜•μ‹: Job X Operation Y, MZ ν˜•νƒœμ˜ μŠ€μΌ€μ€„λ§ μ†”λ£¨μ…˜
  • 검증: μ™„μ „ν•œ μŠ€μΌ€μ€„ 검증 및 makespan 계산 포함

Inference Parameters

이 λͺ¨λΈμ€ λ‹€μŒ νŒŒλΌλ―Έν„°λ“€λ‘œ μ΅œμ ν™”λ˜μ—ˆμŠ΅λ‹ˆλ‹€:

  • max_seq_length=40000: λ³΅μž‘ν•œ JSSP 문제 처리
  • temperature=1.0: λ‹€μ–‘ν•œ μ†”λ£¨μ…˜ 생성
  • top_k=50, top_p=0.95: κ· ν˜•μž‘νžŒ 탐색

Files Structure

HYUNJINI/jssp_llama8b_accord_r64_ep4/
β”œβ”€β”€ adapter_config.json          # LoRA μ„€μ •
β”œβ”€β”€ adapter_model.safetensors    # ν•™μŠ΅λœ LoRA κ°€μ€‘μΉ˜
β”œβ”€β”€ tokenizer.json              # ν† ν¬λ‚˜μ΄μ €
β”œβ”€β”€ tokenizer_config.json       # ν† ν¬λ‚˜μ΄μ € μ„€μ •
└── README.md                   # 이 파일

Citation

@misc{jssp_llama8b_2024,
  title={JSSP LLaMA 8B Fine-tuned Model},
  author={HYUNJINI},
  year={2024},
  note={Fine-tuned on ACCORD dataset for Job Shop Scheduling}
}

License

Apache 2.0 License

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for HYUNJINI/jssp_llama8b_accord_r64_ep4