Hafez commited on
Commit
beeddc5
·
verified ·
1 Parent(s): 56074d3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -3
README.md CHANGED
@@ -1,3 +1,74 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - self-supervised-learning
5
+ - world-models
6
+ - equivariance
7
+ - vision
8
+ - pytorch
9
+ datasets:
10
+ - 3DIEBench
11
+ - STL10
12
+ ---
13
+
14
+ # seq-JEPA: Autoregressive Predictive Learning of Invariant-Equivariant World Models
15
+
16
+ <p align="center">
17
+ <a href="https://openreview.net/forum?id=GKt3VRaCU1"><img src="https://img.shields.io/badge/NeurIPS%202025-Paper-blue" alt="Paper"></a>
18
+ <a href="https://hafezgh.github.io/seq-jepa/"><img src="https://img.shields.io/badge/Project-Page-green" alt="Project Page"></a>
19
+ <a href="https://github.com/hafezgh/seq-jepa"><img src="https://img.shields.io/badge/GitHub-Code-black" alt="Code"></a>
20
+ </p>
21
+
22
+ ## Model Description
23
+
24
+ By processing views sequentially with action conditioning, seq-JEPA naturally segregates representations for equivariance- and invariance-demanding tasks.
25
+
26
+ ## Available Checkpoints
27
+
28
+ | Checkpoint | Dataset | Training | Download |
29
+ |------------|---------|----------|----------|
30
+ | `3diebench_rot_seqlen3.pth` | 3DIEBench | seq-len=3, rotation conditioning | [Download](https://huggingface.co/Hafez/seq-JEPA/resolve/main/3diebench_rot_seqlen3.pth) |
31
+ | `stl10_pls.pth` | STL10 | PLS (predictive learning across saccades) | [Download](https://huggingface.co/Hafez/seq-JEPA/resolve/main/stl10_pls.pth) |
32
+
33
+ ## Usage
34
+
35
+ First, clone the repository to access model definitions:
36
+
37
+ git clone https://github.com/hafezgh/seq-jepa.git
38
+ cd seq-jepaThen load the checkpoints:
39
+
40
+ import torch
41
+ from models import SeqJEPA_Transforms, SeqJEPA_PLS
42
+
43
+ # 3DIEBench checkpoint
44
+ kwargs = {
45
+ "num_heads": 4, "n_channels": 3, "num_enc_layers": 3,
46
+ "num_classes": 55, "act_cond": True, "pred_hidden": 1024,
47
+ "act_projdim": 128, "act_latentdim": 4, "cifar_resnet": False,
48
+ "learn_act_emb": True
49
+ }
50
+ model = SeqJEPA_Transforms(img_size=128, ema=True, ema_decay=0.996, **kwargs)
51
+ ckpt = torch.load('3diebench_rot_seqlen3.pth')
52
+ model.load_state_dict(ckpt['model_state_dict'])
53
+
54
+ # STL10 PLS checkpoint
55
+ kwargs = {
56
+ "num_heads": 4, "n_channels": 3, "num_enc_layers": 3,
57
+ "num_classes": 10, "act_cond": True, "pred_hidden": 1024,
58
+ "act_projdim": 128, "act_latentdim": 2, "cifar_resnet": True,
59
+ "learn_act_emb": True, "pos_dim": 2
60
+ }
61
+ model = SeqJEPA_PLS(fovea_size=32, img_size=96, ema=True, ema_decay=0.996, **kwargs)
62
+ ckpt = torch.load('stl10_pls.pth')
63
+ model.load_state_dict(ckpt['model_state_dict'])## Citation
64
+
65
+ ## Citation
66
+
67
+ @inproceedings{
68
+ ghaemi2025seqjepa,
69
+ title={seq-{JEPA}: Autoregressive Predictive Learning of Invariant-Equivariant World Models},
70
+ author={Hafez Ghaemi and Eilif Benjamin Muller and Shahab Bakhtiari},
71
+ booktitle={The Thirty-ninth Annual Conference on Neural Information Processing Systems},
72
+ year={2025},
73
+ url={https://openreview.net/forum?id=GKt3VRaCU1}
74
+ }