File size: 9,109 Bytes
f261973 9283895 f261973 d8c0d8c f261973 ab573f7 f261973 dfdbdbc c8fa069 52b5a4f bde9e4c 8fec68a dfdbdbc 9217acc f261973 c90dc01 94b79a9 c90dc01 94b79a9 ea7a817 f261973 a2a956b f261973 a2a956b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
---
tags:
- text-classification
- security
- red-team
- roberta
license: odc-by
datasets:
- trendmicro-ailab/Primus-FineWeb
metrics:
- precision
- recall
- f1
pipeline_tag: text-classification
library_name: transformers
models:
- ehsanaghaei/SecureBERT
---
# RedSecureBERT π΄π‘οΈ
Detects **technical red-team / offensive security** text (English).
| Split | Precision | Recall | F1 | Threshold |
|-------|-----------|--------|----|-----------|
| Validation | **0.963** | **0.991** | **0.977** | **0.515** |
> **Recommended cut-off:** `prob >= 0.515` (chosen via Fβ on the validation split).
## Demo
| Phrase | BlueSecureBERT | RedSecureBERT |
|-----------------------------------------------------------------------------------------------------------------------------|----------------|---------------|
| To exfiltrate sensitive data, launch a phishing campaign that tricks employees into revealing their VPN credentials. | 0.066 | 0.824 |
| We should deploy an EDR solution, monitor all endpoints for intrusion attempts, and enforce strict password policies. | 0.557 | 0.019 |
| Our marketing team will unveil the new cybersecurity branding materials at next Tuesdayβs antivirus product launch. | 0.256 | 0.021 |
| I'm excited about the company picnic. There's no cybersecurity topicβjust burgers and games. | 0.272 | 0.103 |
## Intended uses & limits
* **Triaging** large corpora for technical content.
* **Input language:** English.
* **No external test set** yet β treat scores as optimistic.
## Training data
| Label | Rows |
|-------|------|
| Offensive | 30 746 |
| Defensive | 19 550 |
| Other | 130 000 |
| **Total** | **180 296** |
## Model details
| Field | Value |
|-------|-------|
| Base encoder | `ehsanaghaei/SecureBERT` (RoBERTa-base, 125 M) |
| Objective | One-vs-rest, focal-loss (Ξ³ = 2) |
| Epochs | 3 Β· micro-batch 16 Β· LR 2e-5 |
| Hardware | 1Γ RTX 4090 (β 41 min) |
| Inference dtype | FP16-safe |
## Training Data License
- **Source**: [trendmicro-ailab/Primus-FineWeb](https://huggingface.co/datasets/trendmicro-ailab/Primus-FineWeb)
- **License**: ODC-By-1.0 (http://opendatacommons.org/licenses/by/1-0/)
- **Requirements**:
- Preserve all original copyright/βlicense notices
- Honor [Common Crawl ToU](https://commoncrawl.org/terms-of-use/)
## Script exemple
```python
#!/usr/bin/env python
"""
06_split_binary.py
~~~~~~~~~~~~~~~~~~
Stream-splits a JSONL cybersecurity corpus into *offensive*, *defensive*, and *other* shards
using **two** fine-tuned SecureBERT heads.
How the two heads work together
-------------------------------
We load two independent checkpoints:
* `offensive_vs_rest`βββgives **P(offensive | text)**
* `defensive_vs_rest`βββgives **P(defensive | text)**
For every line we:
1. run both heads in the same GPU batch;
2. take the positive-class probability from each soft-max;
3. compare against per-head thresholds (from `thresholds.json`, default 0.5);
4. route the text with this truth table
"""
from __future__ import annotations
import argparse
import json
from itertools import islice
from pathlib import Path
import torch
from torch.nn.functional import softmax
from tqdm.auto import tqdm
from transformers import (
AutoModelForSequenceClassification as HFModel,
AutoTokenizer,
)
from config import RAW_JSONL, MODEL_DIR # MODEL_DIR == securebert_finetuned
# βββββββββββββββββββββββββββββ GPU SETTINGS ββββββββββββββββββββββββββ
# 1. Use TensorFloat-32 on Ada GPUs (gives a big matmul speed boost).
torch.backends.cuda.matmul.allow_tf32 = True
torch.set_float32_matmul_precision("medium")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# ββββββββββββββββββββββββββββββββ CLI ββββββββββββββββββββββββββββββββ
cli = argparse.ArgumentParser(description="Split JSONL into offence/defence/other")
cli.add_argument("--batch_size", type=int, help="override auto batch sizing")
args = cli.parse_args()
# βββββββββββββββββββββ BATCH-SIZE HEURISTIC ββββββββββββββββββββββββββ
if args.batch_size: # user override wins
BATCH = args.batch_size
else:
try:
import pynvml
pynvml.nvmlInit()
free = (
pynvml.nvmlDeviceGetMemoryInfo(pynvml.nvmlDeviceGetHandleByIndex(0)).free
/ 1024**3
)
pynvml.nvmlShutdown()
# ~30 MB per 512-token sequence (bfloat16, two heads) β clamp sensibly
BATCH = max(64, min(int(free // 0.03), 1024))
except Exception: # any issue β decent default
BATCH = 256
print(f"[split-binary] batch size = {BATCH}")
# βββββββββββββββββββββββββ THRESHOLDS ββββββββββββββββββββββββββββββββ
thr_path = Path(MODEL_DIR) / "thresholds.json"
if thr_path.exists():
THR = json.loads(thr_path.read_text())
print("Loaded thresholds:", THR)
else:
THR = {"off": 0.5, "def": 0.5}
print("No thresholds.json β default 0.5 each")
# βββββββββββββββββββ MODEL & TOKENISER LOADING βββββββββββββββββββββββ
def load_model(path: Path):
"""Load classification head in BF16 (no flash-attention)."""
return HFModel.from_pretrained(path, torch_dtype=torch.bfloat16)
paths = {
"off": Path(MODEL_DIR) / "offensive_vs_rest",
"def": Path(MODEL_DIR) / "defensive_vs_rest",
}
print("Loading models β¦")
m_off = load_model(paths["off"]).to(DEVICE).eval()
m_def = load_model(paths["def"]).to(DEVICE).eval()
# Optional: compile graphs for a little extra throughput
try:
m_off = torch.compile(m_off, dynamic=True, mode="reduce-overhead")
m_def = torch.compile(m_def, dynamic=True, mode="reduce-overhead")
print("torch.compile: dynamic=True, reduce-overhead β")
except Exception:
pass
tok = AutoTokenizer.from_pretrained(paths["off"])
ENC = dict(
truncation=True,
padding="longest",
max_length=512,
return_tensors="pt",
)
# βββββββββββββββββββββββ OUTPUT HANDLES ββββββββββββββββββββββββββββββ
outs = {
"off": open("offensive.jsonl", "w", encoding="utf-8"),
"def": open("defensive.jsonl", "w", encoding="utf-8"),
"oth": open("other.jsonl", "w", encoding="utf-8"),
}
# βββββββββββββββββββββββββ HELPERS βββββββββββββββββββββββββββββββββββ
def batched(it, n):
"""Yield `n`-sized chunks from iterator `it`."""
while True:
chunk = list(islice(it, n))
if not chunk:
break
yield chunk
# βββββββββββββββββββββ MAIN SPLITTING LOOP βββββββββββββββββββββββββββ
with open(RAW_JSONL, "r", encoding="utf-8") as fin, torch.inference_mode():
for lines in tqdm(batched(fin, BATCH), desc="Splitting", ncols=110):
recs = [json.loads(l) for l in lines]
texts = [r.get("content", "") for r in recs]
# Tokenise β pin CPU mem β async copy to GPU
batch = tok(texts, **ENC)
batch = {
k: v.pin_memory().to(DEVICE, non_blocking=True) for k, v in batch.items()
}
# Positive-class probabilities
p_off = softmax(m_off(**batch).logits, dim=-1)[:, 1].cpu()
p_def = softmax(m_def(**batch).logits, dim=-1)[:, 1].cpu()
for r, po, pd in zip(recs, p_off, p_def):
txt = r.get("content", "")
off, dfn = po >= THR["off"], pd >= THR["def"]
if off and not dfn:
outs["off"].write(json.dumps({"content": txt}) + "\n")
elif dfn and not off:
outs["def"].write(json.dumps({"content": txt}) + "\n")
elif off and dfn: # tie β higher prob wins
(outs["off"] if po >= pd else outs["def"]).write(
json.dumps({"content": txt}) + "\n"
)
else:
outs["oth"].write(json.dumps({"content": txt}) + "\n")
# βββββββββββββββββββββββββ CLEAN-UP ββββββββββββββββββββββββββββββββββ
for f in outs.values():
f.close()
print("β
Done! β offensive.jsonl defensive.jsonl other.jsonl")
|