Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: ti
|
| 3 |
+
datasets:
|
| 4 |
+
- NLLB
|
| 5 |
+
library_name: transformers
|
| 6 |
+
tags:
|
| 7 |
+
- tigrinya
|
| 8 |
+
- masked-language-modeling
|
| 9 |
+
- xlmr
|
| 10 |
+
- low-resource
|
| 11 |
+
- multilingual
|
| 12 |
+
model_name: XLM-Roberta fine-tuned on Tigrinya (MLM)
|
| 13 |
+
license: apache-2.0
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
# XLM-Roberta Fine-Tuned on Tigrinya (MLM)
|
| 17 |
+
|
| 18 |
+
This model is a fine-tuned version of [`xlm-roberta-base`](https://huggingface.co/xlm-roberta-base) for the **Tigrinya language** (α΅ααα), trained with the **Masked Language Modeling (MLM)** objective. It uses a custom BPE tokenizer adapted to Tigrinya using FastText-informed embedding initialization.
|
| 19 |
+
|
| 20 |
+
## π§ Details
|
| 21 |
+
|
| 22 |
+
- **Base model**: `xlm-roberta-base`
|
| 23 |
+
- **Language**: Tigrinya
|
| 24 |
+
- **Tokenizer**: Custom BPE tokenizer (non-morpheme-aware)
|
| 25 |
+
- **Adaptation**: Embedding initialization using weighted averages of pretrained XLM-R embeddings, guided by Tigrinya FastText word vectors
|
| 26 |
+
- **Training dataset**: Tigrinya side of the [NLLB (No Language Left Behind)](https://github.com/facebookresearch/flores) parallel corpus
|
| 27 |
+
- **Objective**: Masked Language Modeling (MLM)
|
| 28 |
+
|
| 29 |
+
## π§ͺ Usage
|
| 30 |
+
|
| 31 |
+
```python
|
| 32 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
| 33 |
+
|
| 34 |
+
tokenizer = AutoTokenizer.from_pretrained("Hailay/xlmr-tigriyna-mlm")
|
| 35 |
+
model = AutoModelForMaskedLM.from_pretrained("Hailay/xlmr-tigriyna-mlm")
|
| 36 |
+
|
| 37 |
+
text = "α΅αα«α α₯αα΅αα₯α£ αα
αα’ αα₯αͺ ααΊαα’"
|
| 38 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 39 |
+
outputs = model(**inputs)
|
| 40 |
+
π Intended Use
|
| 41 |
+
Pretraining for Tigrinya NLP tasks
|
| 42 |
+
|
| 43 |
+
Fine-tuning on classification, NER, QA, and other downstream tasks in Tigrinya
|
| 44 |
+
|
| 45 |
+
Research in low-resource Semitic and morphologically rich languages
|
| 46 |
+
|
| 47 |
+
π Citation
|
| 48 |
+
@misc{hailay2025tigrinya,
|
| 49 |
+
title={Tigrinya MLM with XLM-R and FastText-Informed Embedding Initialization},
|
| 50 |
+
author={Hailay Kidu},
|
| 51 |
+
year={2025},
|
| 52 |
+
url={https://huggingface.co/Hailay/xlmr-tigriyna-mlm}
|
| 53 |
+
}
|
| 54 |
+
π·οΈ License
|
| 55 |
+
Apache License 2.0
|