add tokenizer and update readme
Browse files- README.md +475 -0
- latxa.jpeg +0 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +35 -0
README.md
CHANGED
|
@@ -1,3 +1,478 @@
|
|
| 1 |
---
|
| 2 |
license: llama2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: llama2
|
| 3 |
+
datasets:
|
| 4 |
+
- HiTZ/euscrawl
|
| 5 |
+
language:
|
| 6 |
+
- eu
|
| 7 |
+
- en
|
| 8 |
+
metrics:
|
| 9 |
+
- accuracy
|
| 10 |
+
- f1
|
| 11 |
+
- perplexity
|
| 12 |
+
pipeline_tag: text-generation
|
| 13 |
---
|
| 14 |
+
|
| 15 |
+
# **Model Card for Latxa 7b**
|
| 16 |
+
|
| 17 |
+

|
| 18 |
+
|
| 19 |
+
Latxa is a collection of foundation models specifically tuned for Basque. Based on Meta’s LLaMA 2 model family, these models were further trained with Euscrawl, a highly curated Basque corpora ([Artetxe et al., 2022](https://aclanthology.org/2022.emnlp-main.499/)). Ranging from 7 billion to 70 billion parameters, these models are currently the biggest and best-performing LLMs built for Basque. This is the 7b repository, links to other models can be found in the [Latxa Collection](https://huggingface.co/collections/HiTZ/latxa-65a697e6838b3acc53677304).
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# **Model Details**
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
## **Model Description**
|
| 26 |
+
|
| 27 |
+
Latxa is a family of Large Language Models (LLM) based on Meta’s [LLaMA models](https://huggingface.co/meta-llama). Current LLMs exhibit incredible performance for high-resource languages such as English, but, in the case of Basque and other low-resource languages, their performance is close to a random guesser. These limitations widen the gap between high- and low-resource languages when it comes to digital development. We present Latxa to overcome these limitations and promote the development of LLM-based technology and research for the Basque language. Latxa models follow the same architecture as their original counterparts and were further trained in Euscrawl v1 ([Artetxe et al., 2022](https://aclanthology.org/2022.emnlp-main.499/)), a high-quality Basque corpora.
|
| 28 |
+
|
| 29 |
+
The models are released in three sizes: 7B, 13B and 70B.
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
* **Developed by:** HiTZ Research Center & IXA Research group (University of the Basque Country UPV/EHU)
|
| 34 |
+
* **Model type:** Language model
|
| 35 |
+
* **Language(s) (NLP):** en, eu
|
| 36 |
+
* **License:** llama2
|
| 37 |
+
* **Parent Model:** meta-llama/Llama-2-7b
|
| 38 |
+
* **Contact:** [email protected]
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
## **Getting started**
|
| 42 |
+
|
| 43 |
+
Use the code below to get started with the model.
|
| 44 |
+
|
| 45 |
+
```python
|
| 46 |
+
|
| 47 |
+
from transformers import pipeline
|
| 48 |
+
|
| 49 |
+
pipe = pipeline("text-generation", model=”HiTZ/latxa-7b-v1”)
|
| 50 |
+
|
| 51 |
+
text = "Euskara adimen artifizialera iritsi da!"
|
| 52 |
+
|
| 53 |
+
pipe(text, max_new_tokens=50, num_beams=5)
|
| 54 |
+
|
| 55 |
+
>> [
|
| 56 |
+
{
|
| 57 |
+
'generated_text': 'Euskara adimen artifizialera iritsi da!\nEuskararen eta adimen artifizialaren arteko harremana aspaldikoa da,'
|
| 58 |
+
' baina azken urteotan aurrerapauso handiak eman dira arlo horretan'
|
| 59 |
+
}
|
| 60 |
+
]
|
| 61 |
+
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
# **Uses**
|
| 66 |
+
|
| 67 |
+
Latxa models are intended to be used with Basque data; for any other language the performance is not guaranteed. Same as the original, Latxa inherits the [LLaMA-2 License](https://ai.meta.com/llama/license/) which allows for commercial and research use.
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
## **Direct Use**
|
| 71 |
+
|
| 72 |
+
Latxa family models are pre-trained LLMs without any task-specific or instruction fine-tuning. That is, the model can either be prompted to perform a specific task or further fine-tuned for specific use cases.
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
## **Out-of-Scope Use**
|
| 76 |
+
|
| 77 |
+
The model was not fine-tuned to follow instructions or to work as a chat assistant, therefore, this kind of usage is not tested nor recommended.
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
# **Bias, Risks, and Limitations**
|
| 81 |
+
|
| 82 |
+
In an effort to alleviate the potentially disturbing or harmful content, Latxa has been trained on carefully selected and processed data which comes mainly from local media, national/regional newspapers, encyclopedias and blogs (see Euscrawl below). Still, the model is based on LLaMA models and can potentially carry the same bias, risk and limitations.
|
| 83 |
+
|
| 84 |
+
Please see the LLaMA’s _Ethical Considerations and Limitations _for further information.
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
# **Training Details**
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
## **Training Data**
|
| 91 |
+
|
| 92 |
+
The models were trained on EusCrawl v1, a high-quality corpus for Basque comprising 1.72M documents, 288M words, totalling 2.1GiB of uncompressed text. EusCrawl was built using ad-hoc scrapers to extract text from 33 Basque websites with high-quality content, resulting in cleaner text compared to general-purpose approaches.
|
| 93 |
+
|
| 94 |
+
See more details in the [EusCrawl](https://huggingface.co/datasets/HiTZ/euscrawl) dataset card.
|
| 95 |
+
|
| 96 |
+
Additionally, 100K documents of English data randomly selected from the [Pile](https://huggingface.co/datasets/EleutherAI/pile) dataset were also included to avoid catastrophic forgetting.
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
## **Training Procedure**
|
| 100 |
+
|
| 101 |
+
The models were trained using the GPT-Neox library on the HPC CINECA computing cluster. All the models were approximately trained with an effective batch size of 2M tokens for 1000 to 2000 steps.
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
<table>
|
| 105 |
+
<tr>
|
| 106 |
+
<td>Model
|
| 107 |
+
</td>
|
| 108 |
+
<td>Steps
|
| 109 |
+
</td>
|
| 110 |
+
<td>Sequence length
|
| 111 |
+
</td>
|
| 112 |
+
<td>Effective Batch size
|
| 113 |
+
</td>
|
| 114 |
+
<td>Total tokens
|
| 115 |
+
</td>
|
| 116 |
+
<td>GPU hours
|
| 117 |
+
</td>
|
| 118 |
+
</tr>
|
| 119 |
+
<tr>
|
| 120 |
+
<td>Latxa 7B
|
| 121 |
+
</td>
|
| 122 |
+
<td><p style="text-align: right">
|
| 123 |
+
2000</p>
|
| 124 |
+
|
| 125 |
+
</td>
|
| 126 |
+
<td><p style="text-align: right">
|
| 127 |
+
4096</p>
|
| 128 |
+
|
| 129 |
+
</td>
|
| 130 |
+
<td><p style="text-align: right">
|
| 131 |
+
2M tokens/step</p>
|
| 132 |
+
|
| 133 |
+
</td>
|
| 134 |
+
<td><p style="text-align: right">
|
| 135 |
+
4B</p>
|
| 136 |
+
|
| 137 |
+
</td>
|
| 138 |
+
<td><p style="text-align: right">
|
| 139 |
+
359.2h</p>
|
| 140 |
+
|
| 141 |
+
</td>
|
| 142 |
+
</tr>
|
| 143 |
+
<tr>
|
| 144 |
+
<td>Latxa 13B
|
| 145 |
+
</td>
|
| 146 |
+
<td><p style="text-align: right">
|
| 147 |
+
1000</p>
|
| 148 |
+
|
| 149 |
+
</td>
|
| 150 |
+
<td><p style="text-align: right">
|
| 151 |
+
4096</p>
|
| 152 |
+
|
| 153 |
+
</td>
|
| 154 |
+
<td><p style="text-align: right">
|
| 155 |
+
2M tokens/step</p>
|
| 156 |
+
|
| 157 |
+
</td>
|
| 158 |
+
<td><p style="text-align: right">
|
| 159 |
+
2B</p>
|
| 160 |
+
|
| 161 |
+
</td>
|
| 162 |
+
<td><p style="text-align: right">
|
| 163 |
+
468.8h</p>
|
| 164 |
+
|
| 165 |
+
</td>
|
| 166 |
+
</tr>
|
| 167 |
+
<tr>
|
| 168 |
+
<td>Latxa 70B
|
| 169 |
+
</td>
|
| 170 |
+
<td><p style="text-align: right">
|
| 171 |
+
1680</p>
|
| 172 |
+
|
| 173 |
+
</td>
|
| 174 |
+
<td><p style="text-align: right">
|
| 175 |
+
4096</p>
|
| 176 |
+
|
| 177 |
+
</td>
|
| 178 |
+
<td><p style="text-align: right">
|
| 179 |
+
2M tokens/step</p>
|
| 180 |
+
|
| 181 |
+
</td>
|
| 182 |
+
<td><p style="text-align: right">
|
| 183 |
+
3.4B</p>
|
| 184 |
+
|
| 185 |
+
</td>
|
| 186 |
+
<td><p style="text-align: right">
|
| 187 |
+
*6475.52h</p>
|
| 188 |
+
|
| 189 |
+
</td>
|
| 190 |
+
</tr>
|
| 191 |
+
</table>
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
* indicates the time for the entire training process (2000 steps), however the weights of the step 1680 are shared as it is the best checkpoint according to validation loss.
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
# **Evaluation**
|
| 198 |
+
|
| 199 |
+
We evaluated the models on zero-shot and few-shot settings on generative, multiple-choice and classification tasks. We used the basque partitions of each dataset.
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
## **Testing Data, Factors & Metrics**
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
### **Testing Data**
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
* **Belebele** ([Bandarkar et al.](https://arxiv.org/abs/2308.16884)): Belebele is a multiple-choice machine reading comprehension (MRC) dataset spanning 122 language variants. We evaluated the model in a 5-shot fashion.
|
| 210 |
+
* Data card: [https://huggingface.co/datasets/facebook/belebele](https://huggingface.co/datasets/facebook/belebele)
|
| 211 |
+
* **X-StoryCloze** ([Lin et al.](https://arxiv.org/abs/2112.10668)): XStoryCloze consists of the professionally translated version of the English StoryCloze dataset to 10 non-English languages. Story Cloze is a commonsense reasoning dataset which consists of choosing the correct ending to a four-sentence story. We evaluated the model in a 0-shot fashion.
|
| 212 |
+
* Data card: [https://huggingface.co/datasets/juletxara/xstory_cloze](https://huggingface.co/datasets/juletxara/xstory_cloze)
|
| 213 |
+
* **BasqueGLUE** ([Urbizu et al.](https://aclanthology.org/2022.lrec-1.172.pdf)): BasqueGLUE is a NLU benchmark for Basque. We evaluated the model in a 5-shot fashion on the following tasks:
|
| 214 |
+
* Data card:[ https://huggingface.co/datasets/orai-nlp/basqueGLUE](https://huggingface.co/datasets/orai-nlp/basqueGLUE).
|
| 215 |
+
* Tasks:
|
| 216 |
+
* **BEC2016eu**: Sentiment analysis on tweets about the 2016 Basque elections campaign.
|
| 217 |
+
* **VaxxStance**: Stance detection on tweets around the anti-vaccine movement.
|
| 218 |
+
* **BTHCv2**: Topic classification of news extracts with 12 categories.
|
| 219 |
+
* **EpecKorrefBin**: Correference detection task similar to WSC.
|
| 220 |
+
* **QNLIeu**: Q&A NLI built from the Basque Wikipedia.
|
| 221 |
+
* **WiCeu**: Basque Word-in-Context task.
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
### **Metrics**
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
* **Accuracy**: Belebele, X-StoryCloze, EpecKorrefBin, QNLI-eu, and, WiC-eu
|
| 229 |
+
* **Micro F1**: BEC2016-eu and BHTCv2
|
| 230 |
+
* **Macro F1**: VaxxStance (favor & against)
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
## **Results**
|
| 234 |
+
|
| 235 |
+
The model was evaluated using the LM Evaluation harness library from Eleuther AI. In order to reproduce our results please refer to our [fork](https://github.com/naiarapm/lm-evaluation-harness/tree/basqueglue) that includes the implementation for the mentioned datasets.
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
<table>
|
| 239 |
+
<tr>
|
| 240 |
+
<td><strong>Model</strong>
|
| 241 |
+
</td>
|
| 242 |
+
<td><strong>Belebele</strong>
|
| 243 |
+
</td>
|
| 244 |
+
<td><strong>X-StoryCloze</strong>
|
| 245 |
+
</td>
|
| 246 |
+
<td><strong>BEC</strong>
|
| 247 |
+
</td>
|
| 248 |
+
<td><strong>Vaxx</strong>
|
| 249 |
+
</td>
|
| 250 |
+
<td><strong>BHTC</strong>
|
| 251 |
+
</td>
|
| 252 |
+
<td><strong>coref</strong>
|
| 253 |
+
</td>
|
| 254 |
+
<td><strong>QNLI</strong>
|
| 255 |
+
</td>
|
| 256 |
+
<td><strong>WiC</strong>
|
| 257 |
+
</td>
|
| 258 |
+
<td><strong>Average</strong>
|
| 259 |
+
</td>
|
| 260 |
+
</tr>
|
| 261 |
+
<tr>
|
| 262 |
+
<td>Random
|
| 263 |
+
</td>
|
| 264 |
+
<td>25.00
|
| 265 |
+
</td>
|
| 266 |
+
<td>50.00
|
| 267 |
+
</td>
|
| 268 |
+
<td>33.33
|
| 269 |
+
</td>
|
| 270 |
+
<td>33.33
|
| 271 |
+
</td>
|
| 272 |
+
<td>8.33
|
| 273 |
+
</td>
|
| 274 |
+
<td>50.00
|
| 275 |
+
</td>
|
| 276 |
+
<td>50.00
|
| 277 |
+
</td>
|
| 278 |
+
<td>50.00
|
| 279 |
+
</td>
|
| 280 |
+
<td>37.50
|
| 281 |
+
</td>
|
| 282 |
+
</tr>
|
| 283 |
+
<tr>
|
| 284 |
+
<td>LLaMA 2 7B
|
| 285 |
+
</td>
|
| 286 |
+
<td>26.22
|
| 287 |
+
</td>
|
| 288 |
+
<td>50.43
|
| 289 |
+
</td>
|
| 290 |
+
<td>41.63
|
| 291 |
+
</td>
|
| 292 |
+
<td>18.60
|
| 293 |
+
</td>
|
| 294 |
+
<td>20.06
|
| 295 |
+
</td>
|
| 296 |
+
<td>50.94
|
| 297 |
+
</td>
|
| 298 |
+
<td>48.32
|
| 299 |
+
</td>
|
| 300 |
+
<td>49.64
|
| 301 |
+
</td>
|
| 302 |
+
<td>38.23
|
| 303 |
+
</td>
|
| 304 |
+
</tr>
|
| 305 |
+
<tr>
|
| 306 |
+
<td>LLaMA 2 13B
|
| 307 |
+
</td>
|
| 308 |
+
<td>32.00
|
| 309 |
+
</td>
|
| 310 |
+
<td>50.63
|
| 311 |
+
</td>
|
| 312 |
+
<td>41.09
|
| 313 |
+
</td>
|
| 314 |
+
<td>18.25
|
| 315 |
+
</td>
|
| 316 |
+
<td>27.35
|
| 317 |
+
</td>
|
| 318 |
+
<td>49.23
|
| 319 |
+
</td>
|
| 320 |
+
<td>48.74
|
| 321 |
+
</td>
|
| 322 |
+
<td>49.21
|
| 323 |
+
</td>
|
| 324 |
+
<td>39.56
|
| 325 |
+
</td>
|
| 326 |
+
</tr>
|
| 327 |
+
<tr>
|
| 328 |
+
<td>LLaMA 2 70B
|
| 329 |
+
</td>
|
| 330 |
+
<td>33.56
|
| 331 |
+
</td>
|
| 332 |
+
<td>51.62
|
| 333 |
+
</td>
|
| 334 |
+
<td>47.47
|
| 335 |
+
</td>
|
| 336 |
+
<td>21.01
|
| 337 |
+
</td>
|
| 338 |
+
<td>31.01
|
| 339 |
+
</td>
|
| 340 |
+
<td>52.98
|
| 341 |
+
</td>
|
| 342 |
+
<td>51.26
|
| 343 |
+
</td>
|
| 344 |
+
<td>51.57
|
| 345 |
+
</td>
|
| 346 |
+
<td>42.56
|
| 347 |
+
</td>
|
| 348 |
+
</tr>
|
| 349 |
+
<tr>
|
| 350 |
+
<td>BLOOM 7B
|
| 351 |
+
</td>
|
| 352 |
+
<td>27.00
|
| 353 |
+
</td>
|
| 354 |
+
<td>57.18
|
| 355 |
+
</td>
|
| 356 |
+
<td>37.94
|
| 357 |
+
</td>
|
| 358 |
+
<td>20.72
|
| 359 |
+
</td>
|
| 360 |
+
<td>39.10
|
| 361 |
+
</td>
|
| 362 |
+
<td>48.21
|
| 363 |
+
</td>
|
| 364 |
+
<td>47.48
|
| 365 |
+
</td>
|
| 366 |
+
<td>47.57
|
| 367 |
+
</td>
|
| 368 |
+
<td>40.65
|
| 369 |
+
</td>
|
| 370 |
+
</tr>
|
| 371 |
+
<tr>
|
| 372 |
+
<td>XGLM 7B
|
| 373 |
+
</td>
|
| 374 |
+
<td>23.88
|
| 375 |
+
</td>
|
| 376 |
+
<td>57.71
|
| 377 |
+
</td>
|
| 378 |
+
<td>39.94
|
| 379 |
+
</td>
|
| 380 |
+
<td>21.58
|
| 381 |
+
</td>
|
| 382 |
+
<td>36.73
|
| 383 |
+
</td>
|
| 384 |
+
<td>50.94
|
| 385 |
+
</td>
|
| 386 |
+
<td>50.42
|
| 387 |
+
</td>
|
| 388 |
+
<td>49.21
|
| 389 |
+
</td>
|
| 390 |
+
<td>41.30
|
| 391 |
+
</td>
|
| 392 |
+
</tr>
|
| 393 |
+
<tr>
|
| 394 |
+
<td><strong>Latxa 7B</strong>
|
| 395 |
+
</td>
|
| 396 |
+
<td>35.67
|
| 397 |
+
</td>
|
| 398 |
+
<td>63.13
|
| 399 |
+
</td>
|
| 400 |
+
<td>55.61
|
| 401 |
+
</td>
|
| 402 |
+
<td>45.93
|
| 403 |
+
</td>
|
| 404 |
+
<td>44.44
|
| 405 |
+
</td>
|
| 406 |
+
<td>50.43
|
| 407 |
+
</td>
|
| 408 |
+
<td>55.04
|
| 409 |
+
</td>
|
| 410 |
+
<td>50.14
|
| 411 |
+
</td>
|
| 412 |
+
<td>50.05
|
| 413 |
+
</td>
|
| 414 |
+
</tr>
|
| 415 |
+
<tr>
|
| 416 |
+
<td><strong>Latxa 13B</strong>
|
| 417 |
+
</td>
|
| 418 |
+
<td>53.56
|
| 419 |
+
</td>
|
| 420 |
+
<td>65.85
|
| 421 |
+
</td>
|
| 422 |
+
<td>53.23
|
| 423 |
+
</td>
|
| 424 |
+
<td>48.66
|
| 425 |
+
</td>
|
| 426 |
+
<td><strong>53.61</strong>
|
| 427 |
+
</td>
|
| 428 |
+
<td>62.52
|
| 429 |
+
</td>
|
| 430 |
+
<td>57.14
|
| 431 |
+
</td>
|
| 432 |
+
<td>54.21
|
| 433 |
+
</td>
|
| 434 |
+
<td>56.10
|
| 435 |
+
</td>
|
| 436 |
+
</tr>
|
| 437 |
+
<tr>
|
| 438 |
+
<td><strong>Latxa 70B</strong>
|
| 439 |
+
</td>
|
| 440 |
+
<td><strong>71.78</strong>
|
| 441 |
+
</td>
|
| 442 |
+
<td><strong>67.57</strong>
|
| 443 |
+
</td>
|
| 444 |
+
<td><strong>63.52</strong>
|
| 445 |
+
</td>
|
| 446 |
+
<td><strong>48.95</strong>
|
| 447 |
+
</td>
|
| 448 |
+
<td>49.51
|
| 449 |
+
</td>
|
| 450 |
+
<td><strong>79.90</strong>
|
| 451 |
+
</td>
|
| 452 |
+
<td><strong>58.82</strong>
|
| 453 |
+
</td>
|
| 454 |
+
<td><strong>55.50</strong>
|
| 455 |
+
</td>
|
| 456 |
+
<td><strong>61.94</strong>
|
| 457 |
+
</td>
|
| 458 |
+
</tr>
|
| 459 |
+
</table>
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
# **Environmental Impact**
|
| 464 |
+
|
| 465 |
+
Carbon emissions are estimated using the[ Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in[ Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
* **Hardware Type:** HPC Cluster, 4x A100 64Gb nodes
|
| 470 |
+
* **Hours used:** 359.2h + 468.8h + 6475.52h = 7303.52h
|
| 471 |
+
* **Compute cluster:** CINECA HPC
|
| 472 |
+
* **Compute Region:** Italy
|
| 473 |
+
* **Carbon Emitted:** 673.75kg CO<sub>2</sub> eq
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
# **Acknowledgements**
|
| 477 |
+
|
| 478 |
+
This work has been partially supported by the Basque Government (IKER-GAITU project). The models were trained on the Leonardo supercomputer at CINECA under the EuroHPC Joint Undertaking, project EHPC-EXT-2023E01-013.
|
latxa.jpeg
ADDED
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"unk_token": {
|
| 17 |
+
"content": "<unk>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
}
|
| 23 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
| 3 |
+
size 499723
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"bos_token": {
|
| 5 |
+
"__type": "AddedToken",
|
| 6 |
+
"content": "<s>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"clean_up_tokenization_spaces": false,
|
| 13 |
+
"eos_token": {
|
| 14 |
+
"__type": "AddedToken",
|
| 15 |
+
"content": "</s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false
|
| 20 |
+
},
|
| 21 |
+
"legacy": false,
|
| 22 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 23 |
+
"pad_token": null,
|
| 24 |
+
"padding_side": "right",
|
| 25 |
+
"sp_model_kwargs": {},
|
| 26 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 27 |
+
"unk_token": {
|
| 28 |
+
"__type": "AddedToken",
|
| 29 |
+
"content": "<unk>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false
|
| 34 |
+
}
|
| 35 |
+
}
|