Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | @@ -31,7 +31,7 @@ It is important to note that the primary intended use case of this model is to c | |
| 31 | 
             
            # pip install -q transformers
         | 
| 32 | 
             
            from transformers import AutoModelForCausalLM, AutoTokenizer
         | 
| 33 |  | 
| 34 | 
            -
            model = "HuggingFaceTB/finemath-ablation- | 
| 35 | 
             
            device = "cuda" # for GPU usage or "cpu" for CPU usage
         | 
| 36 |  | 
| 37 | 
             
            tokenizer = AutoTokenizer.from_pretrained(model)
         | 
| @@ -48,12 +48,12 @@ We are releasing intermediate checkpoints for this model at intervals of every 1 | |
| 48 |  | 
| 49 | 
             
            You can load a specific model revision with `transformers` using the argument `revision`:
         | 
| 50 | 
             
            ```python
         | 
| 51 | 
            -
            model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/finemath-ablation- | 
| 52 | 
             
            ```
         | 
| 53 | 
             
            You can access all the revisions for the models via the following code:
         | 
| 54 | 
             
            ```python
         | 
| 55 | 
             
            from huggingface_hub import list_repo_refs
         | 
| 56 | 
            -
            out = list_repo_refs("HuggingFaceTB/finemath-ablation- | 
| 57 | 
             
            print([b.name for b in out.branches])
         | 
| 58 | 
             
            ```
         | 
| 59 |  | 
|  | |
| 31 | 
             
            # pip install -q transformers
         | 
| 32 | 
             
            from transformers import AutoModelForCausalLM, AutoTokenizer
         | 
| 33 |  | 
| 34 | 
            +
            model = "HuggingFaceTB/finemath-ablation-3plus-160B"
         | 
| 35 | 
             
            device = "cuda" # for GPU usage or "cpu" for CPU usage
         | 
| 36 |  | 
| 37 | 
             
            tokenizer = AutoTokenizer.from_pretrained(model)
         | 
|  | |
| 48 |  | 
| 49 | 
             
            You can load a specific model revision with `transformers` using the argument `revision`:
         | 
| 50 | 
             
            ```python
         | 
| 51 | 
            +
            model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/finemath-ablation-3plus-160B", revision="10B")
         | 
| 52 | 
             
            ```
         | 
| 53 | 
             
            You can access all the revisions for the models via the following code:
         | 
| 54 | 
             
            ```python
         | 
| 55 | 
             
            from huggingface_hub import list_repo_refs
         | 
| 56 | 
            +
            out = list_repo_refs("HuggingFaceTB/finemath-ablation-3plus-160B")
         | 
| 57 | 
             
            print([b.name for b in out.branches])
         | 
| 58 | 
             
            ```
         | 
| 59 |  | 

