--- library_name: scikit-learn tags: - classification - tabular-data metrics: accuracy: 0.6629 precision: 0.6890 recall: 0.8482 f1: 0.7603 params: {"max_depth": 10, "min_samples_leaf": 1, "min_samples_split": 10, "n_estimators": 200} --- # Random Forest Classifier for Engine Condition Prediction This repository contains a trained `RandomForestClassifier` model for predicting engine condition (Normal vs. Faulty) based on various engine parameters. ## Model Details - **Algorithm**: RandomForestClassifier - **Framework**: scikit-learn ## Performance Metrics (on Test Set) - **Accuracy**: 0.6629 - **Precision**: 0.6890 - **Recall**: 0.8482 - **F1-Score**: 0.7603 ## Hyperparameters ```json { "max_depth": 10, "min_samples_leaf": 1, "min_samples_split": 10, "n_estimators": 200 } ``` ## Usage To load and use this model: ```python import joblib from huggingface_hub import hf_hub_download model_path = hf_hub_download(repo_id="HumanMachine74/engine-performance-data-model", filename="random_forest_model.joblib") model = joblib.load(model_path) # Example prediction (assuming X_new is your new data) # predictions = model.predict(X_new) ```