Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🦙🎧 LLaMA-Omni 2: LLM-based Real-time Spoken Chatbot with Autoregressive Streaming Speech Synthesis
|
| 2 |
+
|
| 3 |
+
> **Authors: [Qingkai Fang](https://fangqingkai.github.io/), [Yan Zhou](https://zhouyan19.github.io/zhouyan/), [Shoutao Guo](https://scholar.google.com/citations?hl=en&user=XwHtPyAAAAAJ), [Shaolei Zhang](https://zhangshaolei1998.github.io/), [Yang Feng*](https://people.ucas.edu.cn/~yangfeng?language=en)**
|
| 4 |
+
|
| 5 |
+
[](https://arxiv.org/abs/2505.02625)
|
| 6 |
+
[](https://github.com/ictnlp/LLaMA-Omni2)
|
| 7 |
+
[](https://huggingface.co/collections/ICTNLP/llama-omni-67fdfb852c60470175e36e9c)
|
| 8 |
+
[](https://huggingface.co/datasets/ICTNLP/Multiturn-Speech-Conversations)
|
| 9 |
+
|
| 10 |
+
LLaMA-Omni 2 is a series of speech-language models built on the Qwen2.5-0.5B/1.5B/3B/7B/14B/32B-Instruct models. Similar to [LLaMA-Omni](https://github.com/ictnlp/LLaMA-Omni), it can generate both text and speech responses simultaneously, enabling high-quality and low-latency speech interaction. With the newly introduced streaming autoregressive speech decoder, LLaMA-Omni 2 achieves higher speech quality compared to LLaMA-Omni.
|
| 11 |
+
|
| 12 |
+
<div align="center"><img src="images/llama-omni2.png" width="75%"/></div>
|
| 13 |
+
|
| 14 |
+
## 🔥 News
|
| 15 |
+
|
| 16 |
+
- [25/05] LLaMA-Omni 2 is accepted at ACL 2025 main conference!
|
| 17 |
+
|
| 18 |
+
## Install
|
| 19 |
+
|
| 20 |
+
1. Clone this repository.
|
| 21 |
+
|
| 22 |
+
```shell
|
| 23 |
+
git clone https://github.com/ictnlp/LLaMA-Omni2
|
| 24 |
+
cd LLaMA-Omni2
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
2. Install packages.
|
| 28 |
+
|
| 29 |
+
```shell
|
| 30 |
+
conda create -n llama-omni2 python=3.10
|
| 31 |
+
conda activate llama-omni2
|
| 32 |
+
pip install -e .
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
## Quick Start
|
| 36 |
+
|
| 37 |
+
1. Download the `Whisper-large-v3` model.
|
| 38 |
+
|
| 39 |
+
```shell
|
| 40 |
+
import whisper
|
| 41 |
+
model = whisper.load_model("large-v3", download_root="models/speech_encoder/")
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
2. Download the flow-matching model and vocoder of `CosyVoice 2`.
|
| 45 |
+
|
| 46 |
+
```shell
|
| 47 |
+
huggingface-cli download --resume-download ICTNLP/cosy2_decoder --local-dir models/cosy2_decoder
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
> [!Tip]
|
| 51 |
+
> If you’re experiencing unstable connections to Hugging Face from within China, you can try setting the following in your command line:
|
| 52 |
+
>
|
| 53 |
+
> ```shell
|
| 54 |
+
> export HF_ENDPOINT=https://hf-mirror.com
|
| 55 |
+
> ```
|
| 56 |
+
|
| 57 |
+
3. Download the LLaMA-Omni2 series models from Hugging Face. `LLaMA-Omni2-0.5B/1.5B/3B/7B/14B` support **English only**, while `LLaMA-Omni2-0.5B/1.5B/3B/7B/14B/32B-Bilingual` support **both English and Chinese**.
|
| 58 |
+
|
| 59 |
+
```shell
|
| 60 |
+
model_name=LLaMA-Omni2-7B-Bilingual
|
| 61 |
+
huggingface-cli download --resume-download ICTNLP/$model_name --local-dir models/$model_name
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
| LLaMA-Omni2 | LLaMA-Omni2-Bilingual |
|
| 65 |
+
| --------------------------------------------------------------------- | ----------------------------------------------------------------------------------------- |
|
| 66 |
+
| 🤗 [LLaMA-Omni2-0.5B](https://huggingface.co/ICTNLP/LLaMA-Omni2-0.5B) | 🤗 [LLaMA-Omni2-0.5B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-0.5B-Bilingual) |
|
| 67 |
+
| 🤗 [LLaMA-Omni2-1.5B](https://huggingface.co/ICTNLP/LLaMA-Omni2-1.5B) | 🤗 [LLaMA-Omni2-1.5B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-1.5B-Bilingual) |
|
| 68 |
+
| 🤗 [LLaMA-Omni2-3B](https://huggingface.co/ICTNLP/LLaMA-Omni2-3B) | 🤗 [LLaMA-Omni2-3B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-3B-Bilingual) |
|
| 69 |
+
| 🤗 [LLaMA-Omni2-7B](https://huggingface.co/ICTNLP/LLaMA-Omni2-7B) | 🤗 [LLaMA-Omni2-7B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-7B-Bilingual) |
|
| 70 |
+
| 🤗 [LLaMA-Omni2-14B](https://huggingface.co/ICTNLP/LLaMA-Omni2-14B) | 🤗 [LLaMA-Omni2-14B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-14B-Bilingual) |
|
| 71 |
+
| - | 🤗 [LLaMA-Omni2-32B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-32B-Bilingual) |
|
| 72 |
+
|
| 73 |
+
## Gradio Demo
|
| 74 |
+
|
| 75 |
+
1. Launch a controller.
|
| 76 |
+
|
| 77 |
+
```shell
|
| 78 |
+
python -m llama_omni2.serve.controller --host 0.0.0.0 --port 10000
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
2. Launch a gradio web server.
|
| 82 |
+
|
| 83 |
+
```shell
|
| 84 |
+
python -m llama_omni2.serve.gradio_web_server --controller http://localhost:10000 --port 8000 --vocoder-dir models/cosy2_decoder
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
3. Launch a model worker.
|
| 88 |
+
|
| 89 |
+
```shell
|
| 90 |
+
python -m llama_omni2.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path models/$model_name --model-name $model_name
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
4. Visit [http://localhost:8000/](http://localhost:8000/) and interact with LLaMA-Omni2!
|
| 94 |
+
|
| 95 |
+
## Local Inference
|
| 96 |
+
|
| 97 |
+
```shell
|
| 98 |
+
output_dir=examples/$model_name
|
| 99 |
+
mkdir -p $output_dir
|
| 100 |
+
|
| 101 |
+
python llama_omni2/inference/run_llama_omni2.py \
|
| 102 |
+
--model_path models/$model_name \
|
| 103 |
+
--question_file examples/questions.json \
|
| 104 |
+
--answer_file $output_dir/answers.jsonl \
|
| 105 |
+
--temperature 0 \
|
| 106 |
+
--s2s
|
| 107 |
+
|
| 108 |
+
python llama_omni2/inference/run_cosy2_decoder.py \
|
| 109 |
+
--input-path $output_dir/answers.jsonl \
|
| 110 |
+
--output-dir $output_dir/wav \
|
| 111 |
+
--lang en
|
| 112 |
+
```
|
| 113 |
+
|
| 114 |
+
## LICENSE
|
| 115 |
+
|
| 116 |
+
Our code is released under the Apache-2.0 License. Our model is intended for academic research purposes only and may **NOT** be used for commercial purposes.
|
| 117 |
+
|
| 118 |
+
You are free to use, modify, and distribute this model in academic settings, provided that the following conditions are met:
|
| 119 |
+
|
| 120 |
+
- **Non-commercial use**: The model may not be used for any commercial purposes.
|
| 121 |
+
- **Citation**: If you use this model in your research, please cite the original work.
|
| 122 |
+
|
| 123 |
+
### Commercial Use Restriction
|
| 124 |
+
|
| 125 |
+
For any commercial use inquiries or to obtain a commercial license, please contact `[email protected]`.
|
| 126 |
+
|
| 127 |
+
## Acknowledgements
|
| 128 |
+
|
| 129 |
+
- [CosyVoice 2](https://github.com/FunAudioLLM/CosyVoice): We use the pretrained speech tokenizer, flow-matching model and vocoder of CosyVoice 2.
|
| 130 |
+
- [SLAM-LLM](https://github.com/X-LANCE/SLAM-LLM): We borrow some code about speech encoder and speech adaptor.
|
| 131 |
+
|
| 132 |
+
## Citation
|
| 133 |
+
|
| 134 |
+
If you have any questions, please feel free to submit an issue or contact `[email protected]`.
|
| 135 |
+
|
| 136 |
+
If our work is useful for you, please cite as:
|
| 137 |
+
|
| 138 |
+
```
|
| 139 |
+
@inproceedings{
|
| 140 |
+
fang2025llamaomni2,
|
| 141 |
+
title={{LL}a{MA}-{O}mni 2: LLM-based Real-time Spoken Chatbot with Autoregressive Streaming Speech Synthesis},
|
| 142 |
+
author={Fang, Qingkai and Zhou, Yan and Guo, Shoutao and Zhang, Shaolei and Feng, Yang},
|
| 143 |
+
booktitle = {Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics},
|
| 144 |
+
year={2025}
|
| 145 |
+
}
|
| 146 |
+
|
| 147 |
+
@inproceedings{
|
| 148 |
+
fang2025llamaomni,
|
| 149 |
+
title={{LL}a{MA}-{O}mni: Seamless Speech Interaction with Large Language Models},
|
| 150 |
+
author={Qingkai Fang and Shoutao Guo and Yan Zhou and Zhengrui Ma and Shaolei Zhang and Yang Feng},
|
| 151 |
+
booktitle={The Thirteenth International Conference on Learning Representations},
|
| 152 |
+
year={2025},
|
| 153 |
+
url={https://openreview.net/forum?id=PYmrUQmMEw}
|
| 154 |
+
}
|
| 155 |
+
```
|