Update README.md
Browse files
README.md
CHANGED
|
@@ -8,4 +8,123 @@ tags:
|
|
| 8 |
- speech-language models
|
| 9 |
- speech interaction
|
| 10 |
- speech-to-speech
|
| 11 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
- speech-language models
|
| 9 |
- speech interaction
|
| 10 |
- speech-to-speech
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# 🎧 LLaMA-Omni: Seamless Speech Interaction with Large Language Models
|
| 14 |
+
|
| 15 |
+
> **Authors: [Qingkai Fang](https://fangqingkai.github.io/), [Shoutao Guo](https://scholar.google.com/citations?hl=en&user=XwHtPyAAAAAJ), [Yan Zhou](https://zhouyan19.github.io/zhouyan/), [Zhengrui Ma](https://scholar.google.com.hk/citations?user=dUgq6tEAAAAJ), [Shaolei Zhang](https://zhangshaolei1998.github.io/), [Yang Feng*](https://people.ucas.edu.cn/~yangfeng?language=en)**
|
| 16 |
+
|
| 17 |
+
[](https://arxiv.org/abs/xxxx.xxxxx)
|
| 18 |
+
[](https://huggingface.co/ICTNLP/Llama-3.1-8B-Omni)
|
| 19 |
+
[](https://github.com/ictnlp/LLaMA-Omni)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
LLaMA-Omni is a speech-language model built upon Llama-3.1-8B-Instruct. It supports low-latency and high-quality speech interactions, simultaneously generating both text and speech responses based on speech instructions.
|
| 23 |
+
|
| 24 |
+

|
| 25 |
+
|
| 26 |
+
## 💡 Highlights
|
| 27 |
+
|
| 28 |
+
💪 **Built on Llama-3.1-8B-Instruct, ensuring high-quality responses.**
|
| 29 |
+
|
| 30 |
+
🚀 **Low-latency speech interaction with a latency as low as 226ms.**
|
| 31 |
+
|
| 32 |
+
🎧 **Simultaneous generation of both text and speech responses.**
|
| 33 |
+
|
| 34 |
+
♻️ **Trained in less than 3 days using just 4 GPUs.**
|
| 35 |
+
|
| 36 |
+
## Install
|
| 37 |
+
|
| 38 |
+
1. Clone this repository.
|
| 39 |
+
|
| 40 |
+
```shell
|
| 41 |
+
git clone https://github.com/ictnlp/LLaMA-Omni
|
| 42 |
+
cd LLaMA-Omni
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
2. Install packages.
|
| 46 |
+
|
| 47 |
+
```shell
|
| 48 |
+
conda create -n llama-omni python=3.10
|
| 49 |
+
conda activate llama-omni
|
| 50 |
+
pip install pip==24.0
|
| 51 |
+
pip install -e .
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
3. Install `fairseq`.
|
| 55 |
+
|
| 56 |
+
```shell
|
| 57 |
+
git clone https://github.com/pytorch/fairseq
|
| 58 |
+
cd fairseq
|
| 59 |
+
pip install -e . --no-build-isolation
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
4. Install `flash-attention`.
|
| 63 |
+
|
| 64 |
+
```shell
|
| 65 |
+
pip install flash-attn --no-build-isolation
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
## Quick Start
|
| 69 |
+
|
| 70 |
+
1. Download the `Llama-3.1-8B-Omni` model from 🤗[Huggingface](https://huggingface.co/ICTNLP/Llama-3.1-8B-Omni).
|
| 71 |
+
|
| 72 |
+
2. Download the `Whisper-large-v3` model.
|
| 73 |
+
|
| 74 |
+
```shell
|
| 75 |
+
import whisper
|
| 76 |
+
model = whisper.load_model("large-v3", download_root="models/speech_encoder/")
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
3. Download the unit-based HiFi-GAN vocoder.
|
| 80 |
+
|
| 81 |
+
```shell
|
| 82 |
+
wget https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/vocoder/code_hifigan/mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj/g_00500000 -P vocoder/
|
| 83 |
+
wget https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/vocoder/code_hifigan/mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj/config.json -P vocoder/
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
## Gradio Demo
|
| 87 |
+
|
| 88 |
+
1. Launch a controller.
|
| 89 |
+
```shell
|
| 90 |
+
python -m omni_speech.serve.controller --host 0.0.0.0 --port 10000
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
2. Launch a gradio web server.
|
| 94 |
+
```shell
|
| 95 |
+
python -m omni_speech.serve.gradio_web_server --controller http://localhost:10000 --port 8000 --model-list-mode reload --vocoder vocoder/g_00500000 --vocoder-cfg vocoder/config.json
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
3. Launch a model worker.
|
| 99 |
+
```shell
|
| 100 |
+
python -m omni_speech.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path Llama-3.1-8B-Omni --model-name Llama-3.1-8B-Omni --s2s
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
4. Visit [http://localhost:8000/](http://localhost:8000/) and interact with LLaMA-3.1-8B-Omni!
|
| 104 |
+
|
| 105 |
+
## Local Inference
|
| 106 |
+
|
| 107 |
+
To run inference locally, please organize the speech instruction files according to the format in the `omni_speech/infer/examples` directory, then refer to the following script.
|
| 108 |
+
```shell
|
| 109 |
+
bash omni_speech/infer/run.sh omni_speech/infer/examples
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
## Acknowledgements
|
| 113 |
+
|
| 114 |
+
- [LLaVA](https://github.com/haotian-liu/LLaVA): The codebase we built upon.
|
| 115 |
+
- [SLAM-LLM](https://github.com/X-LANCE/SLAM-LLM): We borrow some code about speech encoder and speech adaptor.
|
| 116 |
+
|
| 117 |
+
## Citation
|
| 118 |
+
|
| 119 |
+
If you have any questions, please feel free to submit an issue or contact `[email protected]`.
|
| 120 |
+
|
| 121 |
+
If our work is useful for you, please cite as:
|
| 122 |
+
|
| 123 |
+
```
|
| 124 |
+
@article{fang-etal-2024-llama-omni,
|
| 125 |
+
title={LLaMA-Omni: Seamless Speech Interaction with Large Language Models},
|
| 126 |
+
author={Fang, Qingkai and Guo, Shoutao and Zhou, Yan and Ma, Zhengrui and Zhang, Shaolei and Feng, Yang},
|
| 127 |
+
journal={arXiv preprint arXiv:xxxx.xxxxx},
|
| 128 |
+
year={2024}
|
| 129 |
+
}
|
| 130 |
+
```
|