Model Initial Update 1
Browse filesUpdate without safetensors
- added_tokens.json +106 -0
- config.json +63 -0
- convnext.py +624 -0
- model.safetensors.index.json +0 -0
- modeling_chatrex.py +880 -0
- preprocessing_chatrex.py +263 -0
- preprocessor_config.json +28 -0
- processor_config.json +6 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +876 -0
added_tokens.json
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</ground>": 32101,
|
| 3 |
+
"</objects>": 32103,
|
| 4 |
+
"<ground>": 32100,
|
| 5 |
+
"<obj0>": 32000,
|
| 6 |
+
"<obj10>": 32010,
|
| 7 |
+
"<obj11>": 32011,
|
| 8 |
+
"<obj12>": 32012,
|
| 9 |
+
"<obj13>": 32013,
|
| 10 |
+
"<obj14>": 32014,
|
| 11 |
+
"<obj15>": 32015,
|
| 12 |
+
"<obj16>": 32016,
|
| 13 |
+
"<obj17>": 32017,
|
| 14 |
+
"<obj18>": 32018,
|
| 15 |
+
"<obj19>": 32019,
|
| 16 |
+
"<obj1>": 32001,
|
| 17 |
+
"<obj20>": 32020,
|
| 18 |
+
"<obj21>": 32021,
|
| 19 |
+
"<obj22>": 32022,
|
| 20 |
+
"<obj23>": 32023,
|
| 21 |
+
"<obj24>": 32024,
|
| 22 |
+
"<obj25>": 32025,
|
| 23 |
+
"<obj26>": 32026,
|
| 24 |
+
"<obj27>": 32027,
|
| 25 |
+
"<obj28>": 32028,
|
| 26 |
+
"<obj29>": 32029,
|
| 27 |
+
"<obj2>": 32002,
|
| 28 |
+
"<obj30>": 32030,
|
| 29 |
+
"<obj31>": 32031,
|
| 30 |
+
"<obj32>": 32032,
|
| 31 |
+
"<obj33>": 32033,
|
| 32 |
+
"<obj34>": 32034,
|
| 33 |
+
"<obj35>": 32035,
|
| 34 |
+
"<obj36>": 32036,
|
| 35 |
+
"<obj37>": 32037,
|
| 36 |
+
"<obj38>": 32038,
|
| 37 |
+
"<obj39>": 32039,
|
| 38 |
+
"<obj3>": 32003,
|
| 39 |
+
"<obj40>": 32040,
|
| 40 |
+
"<obj41>": 32041,
|
| 41 |
+
"<obj42>": 32042,
|
| 42 |
+
"<obj43>": 32043,
|
| 43 |
+
"<obj44>": 32044,
|
| 44 |
+
"<obj45>": 32045,
|
| 45 |
+
"<obj46>": 32046,
|
| 46 |
+
"<obj47>": 32047,
|
| 47 |
+
"<obj48>": 32048,
|
| 48 |
+
"<obj49>": 32049,
|
| 49 |
+
"<obj4>": 32004,
|
| 50 |
+
"<obj50>": 32050,
|
| 51 |
+
"<obj51>": 32051,
|
| 52 |
+
"<obj52>": 32052,
|
| 53 |
+
"<obj53>": 32053,
|
| 54 |
+
"<obj54>": 32054,
|
| 55 |
+
"<obj55>": 32055,
|
| 56 |
+
"<obj56>": 32056,
|
| 57 |
+
"<obj57>": 32057,
|
| 58 |
+
"<obj58>": 32058,
|
| 59 |
+
"<obj59>": 32059,
|
| 60 |
+
"<obj5>": 32005,
|
| 61 |
+
"<obj60>": 32060,
|
| 62 |
+
"<obj61>": 32061,
|
| 63 |
+
"<obj62>": 32062,
|
| 64 |
+
"<obj63>": 32063,
|
| 65 |
+
"<obj64>": 32064,
|
| 66 |
+
"<obj65>": 32065,
|
| 67 |
+
"<obj66>": 32066,
|
| 68 |
+
"<obj67>": 32067,
|
| 69 |
+
"<obj68>": 32068,
|
| 70 |
+
"<obj69>": 32069,
|
| 71 |
+
"<obj6>": 32006,
|
| 72 |
+
"<obj70>": 32070,
|
| 73 |
+
"<obj71>": 32071,
|
| 74 |
+
"<obj72>": 32072,
|
| 75 |
+
"<obj73>": 32073,
|
| 76 |
+
"<obj74>": 32074,
|
| 77 |
+
"<obj75>": 32075,
|
| 78 |
+
"<obj76>": 32076,
|
| 79 |
+
"<obj77>": 32077,
|
| 80 |
+
"<obj78>": 32078,
|
| 81 |
+
"<obj79>": 32079,
|
| 82 |
+
"<obj7>": 32007,
|
| 83 |
+
"<obj80>": 32080,
|
| 84 |
+
"<obj81>": 32081,
|
| 85 |
+
"<obj82>": 32082,
|
| 86 |
+
"<obj83>": 32083,
|
| 87 |
+
"<obj84>": 32084,
|
| 88 |
+
"<obj85>": 32085,
|
| 89 |
+
"<obj86>": 32086,
|
| 90 |
+
"<obj87>": 32087,
|
| 91 |
+
"<obj88>": 32088,
|
| 92 |
+
"<obj89>": 32089,
|
| 93 |
+
"<obj8>": 32008,
|
| 94 |
+
"<obj90>": 32090,
|
| 95 |
+
"<obj91>": 32091,
|
| 96 |
+
"<obj92>": 32092,
|
| 97 |
+
"<obj93>": 32093,
|
| 98 |
+
"<obj94>": 32094,
|
| 99 |
+
"<obj95>": 32095,
|
| 100 |
+
"<obj96>": 32096,
|
| 101 |
+
"<obj97>": 32097,
|
| 102 |
+
"<obj98>": 32098,
|
| 103 |
+
"<obj99>": 32099,
|
| 104 |
+
"<obj9>": 32009,
|
| 105 |
+
"<objects>": 32102
|
| 106 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"ChatRexAuxForConditionalGeneration"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "modeling_chatrex.ChatRexAuxConfig",
|
| 7 |
+
"AutoModelForCausalLM": "modeling_chatrex.ChatRexAuxForConditionalGeneration"
|
| 8 |
+
},
|
| 9 |
+
"ignore_index": -100,
|
| 10 |
+
"image_token_index": 32000,
|
| 11 |
+
"model_type": "chatrex",
|
| 12 |
+
"projector_depth": 2,
|
| 13 |
+
"projector_hidden_act": "gelu",
|
| 14 |
+
"text_config": {
|
| 15 |
+
"_name_or_path": "huggingface_checkpoints/lmsys/vicuna-7b-v1.5",
|
| 16 |
+
"architectures": [
|
| 17 |
+
"LlamaForCausalLM"
|
| 18 |
+
],
|
| 19 |
+
"max_position_embeddings": 4096,
|
| 20 |
+
"model_type": "llama",
|
| 21 |
+
"pad_token_id": 0,
|
| 22 |
+
"rms_norm_eps": 1e-05,
|
| 23 |
+
"torch_dtype": "bfloat16",
|
| 24 |
+
"vocab_size": 32104
|
| 25 |
+
},
|
| 26 |
+
"torch_dtype": "float32",
|
| 27 |
+
"transformers_version": "4.44.2",
|
| 28 |
+
"vision_aux_config": {
|
| 29 |
+
"optimize_vision_tower_aux": false,
|
| 30 |
+
"type": "OpenCLIPVisionTower",
|
| 31 |
+
"use_last_feat": true,
|
| 32 |
+
"vision_tower": "openclip-convnext-large-d-320-laion2B-s29B-b131K-ft-soup"
|
| 33 |
+
},
|
| 34 |
+
"vision_config": {
|
| 35 |
+
"_name_or_path": "huggingface_checkpoints/openai/clip-vit-large-patch14-336",
|
| 36 |
+
"dropout": 0.0,
|
| 37 |
+
"hidden_size": 1024,
|
| 38 |
+
"image_size": 336,
|
| 39 |
+
"intermediate_size": 4096,
|
| 40 |
+
"model_type": "clip_vision_model",
|
| 41 |
+
"num_attention_heads": 16,
|
| 42 |
+
"num_hidden_layers": 24,
|
| 43 |
+
"patch_size": 14,
|
| 44 |
+
"projection_dim": 768
|
| 45 |
+
},
|
| 46 |
+
"vision_feature_layer": -2,
|
| 47 |
+
"vision_feature_select_strategy": "default",
|
| 48 |
+
"visual_prompt_encoder_config": {
|
| 49 |
+
"add_pos_embedding": true,
|
| 50 |
+
"channel_per_level": [
|
| 51 |
+
192,
|
| 52 |
+
384,
|
| 53 |
+
768,
|
| 54 |
+
1536
|
| 55 |
+
],
|
| 56 |
+
"output_size": 7,
|
| 57 |
+
"pos_embedding_dim": 2880,
|
| 58 |
+
"spatail_scale": 0.25,
|
| 59 |
+
"type": "MultiLevelROIVisualPrompt",
|
| 60 |
+
"with_additional_projection": false
|
| 61 |
+
},
|
| 62 |
+
"visual_prompt_hidden_size": 2880
|
| 63 |
+
}
|
convnext.py
ADDED
|
@@ -0,0 +1,624 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from functools import partial
|
| 3 |
+
from typing import Callable, List, Optional, Tuple, Union
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from open_clip.factory import get_model_config
|
| 8 |
+
from open_clip.model import CLIPVisionCfg
|
| 9 |
+
from timm.layers import (AvgPool2dSame, ClassifierHead, DropPath,
|
| 10 |
+
GlobalResponseNormMlp, LayerNorm, LayerNorm2d, Mlp,
|
| 11 |
+
NormMlpClassifierHead, create_conv2d, get_act_layer,
|
| 12 |
+
make_divisible, to_ntuple, trunc_normal_)
|
| 13 |
+
from timm.models._builder import build_model_with_cfg
|
| 14 |
+
from timm.models._features import feature_take_indices
|
| 15 |
+
from timm.models._manipulate import checkpoint_seq, named_apply
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
__all__ = ['ConvNeXt'] # model_registry will add each entrypoint fn to this
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class Downsample(nn.Module):
|
| 22 |
+
|
| 23 |
+
def __init__(self, in_chs, out_chs, stride=1, dilation=1):
|
| 24 |
+
super().__init__()
|
| 25 |
+
avg_stride = stride if dilation == 1 else 1
|
| 26 |
+
if stride > 1 or dilation > 1:
|
| 27 |
+
avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d
|
| 28 |
+
self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False)
|
| 29 |
+
else:
|
| 30 |
+
self.pool = nn.Identity()
|
| 31 |
+
|
| 32 |
+
if in_chs != out_chs:
|
| 33 |
+
self.conv = create_conv2d(in_chs, out_chs, 1, stride=1)
|
| 34 |
+
else:
|
| 35 |
+
self.conv = nn.Identity()
|
| 36 |
+
|
| 37 |
+
def forward(self, x):
|
| 38 |
+
x = self.pool(x)
|
| 39 |
+
x = self.conv(x)
|
| 40 |
+
return x
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class ConvNeXtBlock(nn.Module):
|
| 44 |
+
""" ConvNeXt Block
|
| 45 |
+
There are two equivalent implementations:
|
| 46 |
+
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
|
| 47 |
+
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
|
| 48 |
+
|
| 49 |
+
Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate
|
| 50 |
+
choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear
|
| 51 |
+
is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW.
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
def __init__(
|
| 55 |
+
self,
|
| 56 |
+
in_chs: int,
|
| 57 |
+
out_chs: Optional[int] = None,
|
| 58 |
+
kernel_size: int = 7,
|
| 59 |
+
stride: int = 1,
|
| 60 |
+
dilation: Union[int, Tuple[int, int]] = (1, 1),
|
| 61 |
+
mlp_ratio: float = 4,
|
| 62 |
+
conv_mlp: bool = False,
|
| 63 |
+
conv_bias: bool = True,
|
| 64 |
+
use_grn: bool = False,
|
| 65 |
+
ls_init_value: Optional[float] = 1e-6,
|
| 66 |
+
act_layer: Union[str, Callable] = 'gelu',
|
| 67 |
+
norm_layer: Optional[Callable] = None,
|
| 68 |
+
drop_path: float = 0.,
|
| 69 |
+
):
|
| 70 |
+
"""
|
| 71 |
+
|
| 72 |
+
Args:
|
| 73 |
+
in_chs: Block input channels.
|
| 74 |
+
out_chs: Block output channels (same as in_chs if None).
|
| 75 |
+
kernel_size: Depthwise convolution kernel size.
|
| 76 |
+
stride: Stride of depthwise convolution.
|
| 77 |
+
dilation: Tuple specifying input and output dilation of block.
|
| 78 |
+
mlp_ratio: MLP expansion ratio.
|
| 79 |
+
conv_mlp: Use 1x1 convolutions for MLP and a NCHW compatible norm layer if True.
|
| 80 |
+
conv_bias: Apply bias for all convolution (linear) layers.
|
| 81 |
+
use_grn: Use GlobalResponseNorm in MLP (from ConvNeXt-V2)
|
| 82 |
+
ls_init_value: Layer-scale init values, layer-scale applied if not None.
|
| 83 |
+
act_layer: Activation layer.
|
| 84 |
+
norm_layer: Normalization layer (defaults to LN if not specified).
|
| 85 |
+
drop_path: Stochastic depth probability.
|
| 86 |
+
"""
|
| 87 |
+
super().__init__()
|
| 88 |
+
out_chs = out_chs or in_chs
|
| 89 |
+
dilation = to_ntuple(2)(dilation)
|
| 90 |
+
act_layer = get_act_layer(act_layer)
|
| 91 |
+
if not norm_layer:
|
| 92 |
+
norm_layer = LayerNorm2d if conv_mlp else LayerNorm
|
| 93 |
+
mlp_layer = partial(GlobalResponseNormMlp if use_grn else Mlp, use_conv=conv_mlp)
|
| 94 |
+
self.use_conv_mlp = conv_mlp
|
| 95 |
+
self.conv_dw = create_conv2d(
|
| 96 |
+
in_chs,
|
| 97 |
+
out_chs,
|
| 98 |
+
kernel_size=kernel_size,
|
| 99 |
+
stride=stride,
|
| 100 |
+
dilation=dilation[0],
|
| 101 |
+
depthwise=True,
|
| 102 |
+
bias=conv_bias,
|
| 103 |
+
)
|
| 104 |
+
self.norm = norm_layer(out_chs)
|
| 105 |
+
self.mlp = mlp_layer(out_chs, int(mlp_ratio * out_chs), act_layer=act_layer)
|
| 106 |
+
self.ramma = nn.Parameter(ls_init_value * torch.ones(out_chs)) if ls_init_value is not None else None
|
| 107 |
+
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]:
|
| 108 |
+
self.shortcut = Downsample(in_chs, out_chs, stride=stride, dilation=dilation[0])
|
| 109 |
+
else:
|
| 110 |
+
self.shortcut = nn.Identity()
|
| 111 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 112 |
+
|
| 113 |
+
def forward(self, x):
|
| 114 |
+
shortcut = x
|
| 115 |
+
x = self.conv_dw(x)
|
| 116 |
+
if self.use_conv_mlp:
|
| 117 |
+
x = self.norm(x)
|
| 118 |
+
x = self.mlp(x)
|
| 119 |
+
else:
|
| 120 |
+
x = x.permute(0, 2, 3, 1)
|
| 121 |
+
x = self.norm(x)
|
| 122 |
+
x = self.mlp(x)
|
| 123 |
+
x = x.permute(0, 3, 1, 2)
|
| 124 |
+
if self.ramma is not None:
|
| 125 |
+
x = x.mul(self.ramma.reshape(1, -1, 1, 1))
|
| 126 |
+
|
| 127 |
+
x = self.drop_path(x) + self.shortcut(shortcut)
|
| 128 |
+
return x
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
class ConvNeXtStage(nn.Module):
|
| 132 |
+
|
| 133 |
+
def __init__(
|
| 134 |
+
self,
|
| 135 |
+
in_chs,
|
| 136 |
+
out_chs,
|
| 137 |
+
kernel_size=7,
|
| 138 |
+
stride=2,
|
| 139 |
+
depth=2,
|
| 140 |
+
dilation=(1, 1),
|
| 141 |
+
drop_path_rates=None,
|
| 142 |
+
ls_init_value=1.0,
|
| 143 |
+
conv_mlp=False,
|
| 144 |
+
conv_bias=True,
|
| 145 |
+
use_grn=False,
|
| 146 |
+
act_layer='gelu',
|
| 147 |
+
norm_layer=None,
|
| 148 |
+
norm_layer_cl=None
|
| 149 |
+
):
|
| 150 |
+
super().__init__()
|
| 151 |
+
self.grad_checkpointing = False
|
| 152 |
+
|
| 153 |
+
if in_chs != out_chs or stride > 1 or dilation[0] != dilation[1]:
|
| 154 |
+
ds_ks = 2 if stride > 1 or dilation[0] != dilation[1] else 1
|
| 155 |
+
pad = 'same' if dilation[1] > 1 else 0 # same padding needed if dilation used
|
| 156 |
+
self.downsample = nn.Sequential(
|
| 157 |
+
norm_layer(in_chs),
|
| 158 |
+
create_conv2d(
|
| 159 |
+
in_chs,
|
| 160 |
+
out_chs,
|
| 161 |
+
kernel_size=ds_ks,
|
| 162 |
+
stride=stride,
|
| 163 |
+
dilation=dilation[0],
|
| 164 |
+
padding=pad,
|
| 165 |
+
bias=conv_bias,
|
| 166 |
+
),
|
| 167 |
+
)
|
| 168 |
+
in_chs = out_chs
|
| 169 |
+
else:
|
| 170 |
+
self.downsample = nn.Identity()
|
| 171 |
+
|
| 172 |
+
drop_path_rates = drop_path_rates or [0.] * depth
|
| 173 |
+
stage_blocks = []
|
| 174 |
+
for i in range(depth):
|
| 175 |
+
stage_blocks.append(ConvNeXtBlock(
|
| 176 |
+
in_chs=in_chs,
|
| 177 |
+
out_chs=out_chs,
|
| 178 |
+
kernel_size=kernel_size,
|
| 179 |
+
dilation=dilation[1],
|
| 180 |
+
drop_path=drop_path_rates[i],
|
| 181 |
+
ls_init_value=ls_init_value,
|
| 182 |
+
conv_mlp=conv_mlp,
|
| 183 |
+
conv_bias=conv_bias,
|
| 184 |
+
use_grn=use_grn,
|
| 185 |
+
act_layer=act_layer,
|
| 186 |
+
norm_layer=norm_layer if conv_mlp else norm_layer_cl,
|
| 187 |
+
))
|
| 188 |
+
in_chs = out_chs
|
| 189 |
+
self.blocks = nn.Sequential(*stage_blocks)
|
| 190 |
+
|
| 191 |
+
def forward(self, x):
|
| 192 |
+
x = self.downsample(x)
|
| 193 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
| 194 |
+
x = checkpoint_seq(self.blocks, x)
|
| 195 |
+
else:
|
| 196 |
+
x = self.blocks(x)
|
| 197 |
+
return x
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
class ConvNeXt(nn.Module):
|
| 201 |
+
r""" ConvNeXt
|
| 202 |
+
A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf
|
| 203 |
+
"""
|
| 204 |
+
|
| 205 |
+
def __init__(
|
| 206 |
+
self,
|
| 207 |
+
in_chans: int = 3,
|
| 208 |
+
num_classes: int = 1000,
|
| 209 |
+
global_pool: str = 'avg',
|
| 210 |
+
output_stride: int = 32,
|
| 211 |
+
depths: Tuple[int, ...] = (3, 3, 9, 3),
|
| 212 |
+
dims: Tuple[int, ...] = (96, 192, 384, 768),
|
| 213 |
+
kernel_sizes: Union[int, Tuple[int, ...]] = 7,
|
| 214 |
+
ls_init_value: Optional[float] = 1e-6,
|
| 215 |
+
stem_type: str = 'patch',
|
| 216 |
+
patch_size: int = 4,
|
| 217 |
+
head_init_scale: float = 1.,
|
| 218 |
+
head_norm_first: bool = False,
|
| 219 |
+
head_hidden_size: Optional[int] = None,
|
| 220 |
+
conv_mlp: bool = False,
|
| 221 |
+
conv_bias: bool = True,
|
| 222 |
+
use_grn: bool = False,
|
| 223 |
+
act_layer: Union[str, Callable] = 'gelu',
|
| 224 |
+
norm_layer: Optional[Union[str, Callable]] = None,
|
| 225 |
+
norm_eps: Optional[float] = None,
|
| 226 |
+
drop_rate: float = 0.,
|
| 227 |
+
drop_path_rate: float = 0.,
|
| 228 |
+
):
|
| 229 |
+
"""
|
| 230 |
+
Args:
|
| 231 |
+
in_chans: Number of input image channels.
|
| 232 |
+
num_classes: Number of classes for classification head.
|
| 233 |
+
global_pool: Global pooling type.
|
| 234 |
+
output_stride: Output stride of network, one of (8, 16, 32).
|
| 235 |
+
depths: Number of blocks at each stage.
|
| 236 |
+
dims: Feature dimension at each stage.
|
| 237 |
+
kernel_sizes: Depthwise convolution kernel-sizes for each stage.
|
| 238 |
+
ls_init_value: Init value for Layer Scale, disabled if None.
|
| 239 |
+
stem_type: Type of stem.
|
| 240 |
+
patch_size: Stem patch size for patch stem.
|
| 241 |
+
head_init_scale: Init scaling value for classifier weights and biases.
|
| 242 |
+
head_norm_first: Apply normalization before global pool + head.
|
| 243 |
+
head_hidden_size: Size of MLP hidden layer in head if not None and head_norm_first == False.
|
| 244 |
+
conv_mlp: Use 1x1 conv in MLP, improves speed for small networks w/ chan last.
|
| 245 |
+
conv_bias: Use bias layers w/ all convolutions.
|
| 246 |
+
use_grn: Use Global Response Norm (ConvNeXt-V2) in MLP.
|
| 247 |
+
act_layer: Activation layer type.
|
| 248 |
+
norm_layer: Normalization layer type.
|
| 249 |
+
drop_rate: Head pre-classifier dropout rate.
|
| 250 |
+
drop_path_rate: Stochastic depth drop rate.
|
| 251 |
+
"""
|
| 252 |
+
super().__init__()
|
| 253 |
+
assert output_stride in (8, 16, 32)
|
| 254 |
+
kernel_sizes = to_ntuple(4)(kernel_sizes)
|
| 255 |
+
if norm_layer is None:
|
| 256 |
+
norm_layer = LayerNorm2d
|
| 257 |
+
norm_layer_cl = norm_layer if conv_mlp else LayerNorm
|
| 258 |
+
if norm_eps is not None:
|
| 259 |
+
norm_layer = partial(norm_layer, eps=norm_eps)
|
| 260 |
+
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)
|
| 261 |
+
else:
|
| 262 |
+
assert conv_mlp,\
|
| 263 |
+
'If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input'
|
| 264 |
+
norm_layer_cl = norm_layer
|
| 265 |
+
if norm_eps is not None:
|
| 266 |
+
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)
|
| 267 |
+
|
| 268 |
+
self.num_classes = num_classes
|
| 269 |
+
self.drop_rate = drop_rate
|
| 270 |
+
self.feature_info = []
|
| 271 |
+
|
| 272 |
+
assert stem_type in ('patch', 'overlap', 'overlap_tiered')
|
| 273 |
+
if stem_type == 'patch':
|
| 274 |
+
# NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4
|
| 275 |
+
self.stem = nn.Sequential(
|
| 276 |
+
nn.Conv2d(in_chans, dims[0], kernel_size=patch_size, stride=patch_size, bias=conv_bias),
|
| 277 |
+
norm_layer(dims[0]),
|
| 278 |
+
)
|
| 279 |
+
stem_stride = patch_size
|
| 280 |
+
else:
|
| 281 |
+
mid_chs = make_divisible(dims[0] // 2) if 'tiered' in stem_type else dims[0]
|
| 282 |
+
self.stem = nn.Sequential(
|
| 283 |
+
nn.Conv2d(in_chans, mid_chs, kernel_size=3, stride=2, padding=1, bias=conv_bias),
|
| 284 |
+
nn.Conv2d(mid_chs, dims[0], kernel_size=3, stride=2, padding=1, bias=conv_bias),
|
| 285 |
+
norm_layer(dims[0]),
|
| 286 |
+
)
|
| 287 |
+
stem_stride = 4
|
| 288 |
+
|
| 289 |
+
self.stages = nn.Sequential()
|
| 290 |
+
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
|
| 291 |
+
stages = []
|
| 292 |
+
prev_chs = dims[0]
|
| 293 |
+
curr_stride = stem_stride
|
| 294 |
+
dilation = 1
|
| 295 |
+
# 4 feature resolution stages, each consisting of multiple residual blocks
|
| 296 |
+
for i in range(4):
|
| 297 |
+
stride = 2 if curr_stride == 2 or i > 0 else 1
|
| 298 |
+
if curr_stride >= output_stride and stride > 1:
|
| 299 |
+
dilation *= stride
|
| 300 |
+
stride = 1
|
| 301 |
+
curr_stride *= stride
|
| 302 |
+
first_dilation = 1 if dilation in (1, 2) else 2
|
| 303 |
+
out_chs = dims[i]
|
| 304 |
+
stages.append(ConvNeXtStage(
|
| 305 |
+
prev_chs,
|
| 306 |
+
out_chs,
|
| 307 |
+
kernel_size=kernel_sizes[i],
|
| 308 |
+
stride=stride,
|
| 309 |
+
dilation=(first_dilation, dilation),
|
| 310 |
+
depth=depths[i],
|
| 311 |
+
drop_path_rates=dp_rates[i],
|
| 312 |
+
ls_init_value=ls_init_value,
|
| 313 |
+
conv_mlp=conv_mlp,
|
| 314 |
+
conv_bias=conv_bias,
|
| 315 |
+
use_grn=use_grn,
|
| 316 |
+
act_layer=act_layer,
|
| 317 |
+
norm_layer=norm_layer,
|
| 318 |
+
norm_layer_cl=norm_layer_cl,
|
| 319 |
+
))
|
| 320 |
+
prev_chs = out_chs
|
| 321 |
+
# NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2
|
| 322 |
+
self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')]
|
| 323 |
+
self.stages = nn.Sequential(*stages)
|
| 324 |
+
self.num_features = self.head_hidden_size = prev_chs
|
| 325 |
+
|
| 326 |
+
# if head_norm_first == true, norm -> global pool -> fc ordering, like most other nets
|
| 327 |
+
# otherwise pool -> norm -> fc, the default ConvNeXt ordering (pretrained FB weights)
|
| 328 |
+
if head_norm_first:
|
| 329 |
+
assert not head_hidden_size
|
| 330 |
+
self.norm_pre = norm_layer(self.num_features)
|
| 331 |
+
self.head = ClassifierHead(
|
| 332 |
+
self.num_features,
|
| 333 |
+
num_classes,
|
| 334 |
+
pool_type=global_pool,
|
| 335 |
+
drop_rate=self.drop_rate,
|
| 336 |
+
)
|
| 337 |
+
else:
|
| 338 |
+
self.norm_pre = nn.Identity()
|
| 339 |
+
self.head = NormMlpClassifierHead(
|
| 340 |
+
self.num_features,
|
| 341 |
+
num_classes,
|
| 342 |
+
hidden_size=head_hidden_size,
|
| 343 |
+
pool_type=global_pool,
|
| 344 |
+
drop_rate=self.drop_rate,
|
| 345 |
+
norm_layer=norm_layer,
|
| 346 |
+
act_layer='gelu',
|
| 347 |
+
)
|
| 348 |
+
self.head_hidden_size = self.head.num_features
|
| 349 |
+
named_apply(partial(_init_weights, head_init_scale=head_init_scale), self)
|
| 350 |
+
|
| 351 |
+
@torch.jit.ignore
|
| 352 |
+
def group_matcher(self, coarse=False):
|
| 353 |
+
return dict(
|
| 354 |
+
stem=r'^stem',
|
| 355 |
+
blocks=r'^stages\.(\d+)' if coarse else [
|
| 356 |
+
(r'^stages\.(\d+)\.downsample', (0,)), # blocks
|
| 357 |
+
(r'^stages\.(\d+)\.blocks\.(\d+)', None),
|
| 358 |
+
(r'^norm_pre', (99999,))
|
| 359 |
+
]
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
@torch.jit.ignore
|
| 363 |
+
def set_grad_checkpointing(self, enable=True):
|
| 364 |
+
for s in self.stages:
|
| 365 |
+
s.grad_checkpointing = enable
|
| 366 |
+
|
| 367 |
+
@torch.jit.ignore
|
| 368 |
+
def get_classifier(self) -> nn.Module:
|
| 369 |
+
return self.head.fc
|
| 370 |
+
|
| 371 |
+
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
|
| 372 |
+
self.num_classes = num_classes
|
| 373 |
+
self.head.reset(num_classes, global_pool)
|
| 374 |
+
|
| 375 |
+
def forward_intermediates(
|
| 376 |
+
self,
|
| 377 |
+
x: torch.Tensor,
|
| 378 |
+
indices: Optional[Union[int, List[int], Tuple[int]]] = None,
|
| 379 |
+
norm: bool = False,
|
| 380 |
+
stop_early: bool = False,
|
| 381 |
+
output_fmt: str = 'NCHW',
|
| 382 |
+
intermediates_only: bool = False,
|
| 383 |
+
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
| 384 |
+
""" Forward features that returns intermediates.
|
| 385 |
+
|
| 386 |
+
Args:
|
| 387 |
+
x: Input image tensor
|
| 388 |
+
indices: Take last n blocks if int, all if None, select matching indices if sequence
|
| 389 |
+
norm: Apply norm layer to compatible intermediates
|
| 390 |
+
stop_early: Stop iterating over blocks when last desired intermediate hit
|
| 391 |
+
output_fmt: Shape of intermediate feature outputs
|
| 392 |
+
intermediates_only: Only return intermediate features
|
| 393 |
+
Returns:
|
| 394 |
+
|
| 395 |
+
"""
|
| 396 |
+
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.'
|
| 397 |
+
intermediates = []
|
| 398 |
+
take_indices, max_index = feature_take_indices(len(self.stages) + 1, indices)
|
| 399 |
+
|
| 400 |
+
# forward pass
|
| 401 |
+
feat_idx = 0 # stem is index 0
|
| 402 |
+
x = self.stem(x)
|
| 403 |
+
if feat_idx in take_indices:
|
| 404 |
+
intermediates.append(x)
|
| 405 |
+
|
| 406 |
+
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
| 407 |
+
stages = self.stages
|
| 408 |
+
else:
|
| 409 |
+
stages = self.stages[:max_index]
|
| 410 |
+
for stage in stages:
|
| 411 |
+
feat_idx += 1
|
| 412 |
+
x = stage(x)
|
| 413 |
+
if feat_idx in take_indices:
|
| 414 |
+
# NOTE not bothering to apply norm_pre when norm=True as almost no models have it enabled
|
| 415 |
+
intermediates.append(x)
|
| 416 |
+
|
| 417 |
+
if intermediates_only:
|
| 418 |
+
return intermediates
|
| 419 |
+
|
| 420 |
+
x = self.norm_pre(x)
|
| 421 |
+
|
| 422 |
+
return x, intermediates
|
| 423 |
+
|
| 424 |
+
def prune_intermediate_layers(
|
| 425 |
+
self,
|
| 426 |
+
indices: Union[int, List[int], Tuple[int]] = 1,
|
| 427 |
+
prune_norm: bool = False,
|
| 428 |
+
prune_head: bool = True,
|
| 429 |
+
):
|
| 430 |
+
""" Prune layers not required for specified intermediates.
|
| 431 |
+
"""
|
| 432 |
+
take_indices, max_index = feature_take_indices(len(self.stages) + 1, indices)
|
| 433 |
+
self.stages = self.stages[:max_index] # truncate blocks w/ stem as idx 0
|
| 434 |
+
if prune_norm:
|
| 435 |
+
self.norm_pre = nn.Identity()
|
| 436 |
+
if prune_head:
|
| 437 |
+
self.reset_classifier(0, '')
|
| 438 |
+
return take_indices
|
| 439 |
+
|
| 440 |
+
def forward_features(self, x):
|
| 441 |
+
x = self.stem(x)
|
| 442 |
+
x = self.stages(x)
|
| 443 |
+
x = self.norm_pre(x)
|
| 444 |
+
return x
|
| 445 |
+
|
| 446 |
+
def forward_head(self, x, pre_logits: bool = False):
|
| 447 |
+
return self.head(x, pre_logits=True) if pre_logits else self.head(x)
|
| 448 |
+
|
| 449 |
+
def forward(self, x):
|
| 450 |
+
x = self.forward_features(x)
|
| 451 |
+
x = self.forward_head(x)
|
| 452 |
+
return x
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
def _init_weights(module, name=None, head_init_scale=1.0):
|
| 456 |
+
if isinstance(module, nn.Conv2d):
|
| 457 |
+
trunc_normal_(module.weight, std=.02)
|
| 458 |
+
if module.bias is not None:
|
| 459 |
+
nn.init.zeros_(module.bias)
|
| 460 |
+
elif isinstance(module, nn.Linear):
|
| 461 |
+
trunc_normal_(module.weight, std=.02)
|
| 462 |
+
nn.init.zeros_(module.bias)
|
| 463 |
+
if name and 'head.' in name:
|
| 464 |
+
module.weight.data.mul_(head_init_scale)
|
| 465 |
+
module.bias.data.mul_(head_init_scale)
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
def checkpoint_filter_fn(state_dict, model):
|
| 469 |
+
""" Remap FB checkpoints -> timm """
|
| 470 |
+
if 'head.norm.weight' in state_dict or 'norm_pre.weight' in state_dict:
|
| 471 |
+
return state_dict # non-FB checkpoint
|
| 472 |
+
if 'model' in state_dict:
|
| 473 |
+
state_dict = state_dict['model']
|
| 474 |
+
|
| 475 |
+
out_dict = {}
|
| 476 |
+
if 'visual.trunk.stem.0.weight' in state_dict:
|
| 477 |
+
out_dict = {k.replace('visual.trunk.', ''): v for k, v in state_dict.items() if k.startswith('visual.trunk.')}
|
| 478 |
+
if 'visual.head.proj.weight' in state_dict:
|
| 479 |
+
out_dict['head.fc.weight'] = state_dict['visual.head.proj.weight']
|
| 480 |
+
out_dict['head.fc.bias'] = torch.zeros(state_dict['visual.head.proj.weight'].shape[0])
|
| 481 |
+
elif 'visual.head.mlp.fc1.weight' in state_dict:
|
| 482 |
+
out_dict['head.pre_logits.fc.weight'] = state_dict['visual.head.mlp.fc1.weight']
|
| 483 |
+
out_dict['head.pre_logits.fc.bias'] = state_dict['visual.head.mlp.fc1.bias']
|
| 484 |
+
out_dict['head.fc.weight'] = state_dict['visual.head.mlp.fc2.weight']
|
| 485 |
+
out_dict['head.fc.bias'] = torch.zeros(state_dict['visual.head.mlp.fc2.weight'].shape[0])
|
| 486 |
+
return out_dict
|
| 487 |
+
|
| 488 |
+
import re
|
| 489 |
+
for k, v in state_dict.items():
|
| 490 |
+
k = k.replace('downsample_layers.0.', 'stem.')
|
| 491 |
+
k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k)
|
| 492 |
+
k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k)
|
| 493 |
+
k = k.replace('dwconv', 'conv_dw')
|
| 494 |
+
k = k.replace('pwconv', 'mlp.fc')
|
| 495 |
+
if 'grn' in k:
|
| 496 |
+
k = k.replace('grn.beta', 'mlp.grn.bias')
|
| 497 |
+
k = k.replace('grn.ramma', 'mlp.grn.weight')
|
| 498 |
+
v = v.reshape(v.shape[-1])
|
| 499 |
+
k = k.replace('head.', 'head.fc.')
|
| 500 |
+
if k.startswith('norm.'):
|
| 501 |
+
k = k.replace('norm', 'head.norm')
|
| 502 |
+
if v.ndim == 2 and 'head' not in k:
|
| 503 |
+
model_shape = model.state_dict()[k].shape
|
| 504 |
+
v = v.reshape(model_shape)
|
| 505 |
+
out_dict[k] = v
|
| 506 |
+
|
| 507 |
+
return out_dict
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
def _create_convnext(variant, pretrained=False, **kwargs):
|
| 511 |
+
if kwargs.get('pretrained_cfg', '') == 'fcmae':
|
| 512 |
+
# NOTE fcmae pretrained weights have no classifier or final norm-layer (`head.norm`)
|
| 513 |
+
# This is workaround loading with num_classes=0 w/o removing norm-layer.
|
| 514 |
+
kwargs.setdefault('pretrained_strict', False)
|
| 515 |
+
|
| 516 |
+
model = build_model_with_cfg(
|
| 517 |
+
ConvNeXt, variant, pretrained,
|
| 518 |
+
pretrained_filter_fn=checkpoint_filter_fn,
|
| 519 |
+
feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True),
|
| 520 |
+
**kwargs)
|
| 521 |
+
return model
|
| 522 |
+
|
| 523 |
+
def convnext_large(pretrained=False, **kwargs) -> ConvNeXt:
|
| 524 |
+
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536])
|
| 525 |
+
model = _create_convnext('convnext_large', pretrained=pretrained, **dict(model_args, **kwargs))
|
| 526 |
+
return model
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
|
| 530 |
+
class CLIP(nn.Module):
|
| 531 |
+
output_dict: torch.jit.Final[bool]
|
| 532 |
+
|
| 533 |
+
def __init__(
|
| 534 |
+
self,
|
| 535 |
+
embed_dim: int,
|
| 536 |
+
vision_cfg: CLIPVisionCfg,
|
| 537 |
+
quick_gelu: bool = False,
|
| 538 |
+
cast_dtype: Optional[torch.dtype] = None,
|
| 539 |
+
output_dict: bool = False,
|
| 540 |
+
**kwargs,
|
| 541 |
+
):
|
| 542 |
+
super().__init__()
|
| 543 |
+
self.output_dict = output_dict
|
| 544 |
+
|
| 545 |
+
self.visual = convnext_large()
|
| 546 |
+
|
| 547 |
+
class ConvNextVisionEncoder(nn.Module):
|
| 548 |
+
def __init__(
|
| 549 |
+
self,
|
| 550 |
+
):
|
| 551 |
+
super().__init__()
|
| 552 |
+
self.model_type = "convnext_large_d_320"
|
| 553 |
+
self.model_channel = [192, 384, 768, 1536] # stage 0-3
|
| 554 |
+
|
| 555 |
+
clip_model = CLIP(**get_model_config(self.model_type), use_text=False)
|
| 556 |
+
|
| 557 |
+
# decompose stem and stages blocks in vision tower
|
| 558 |
+
self.vision_stem = clip_model.visual.stem
|
| 559 |
+
self.vision_stages = clip_model.visual.stages
|
| 560 |
+
|
| 561 |
+
def forward(self, images):
|
| 562 |
+
|
| 563 |
+
if type(images) is list:
|
| 564 |
+
image_features = []
|
| 565 |
+
for image in images:
|
| 566 |
+
image_feature = self.backbone(
|
| 567 |
+
image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
|
| 568 |
+
)
|
| 569 |
+
image_features.append(image_feature)
|
| 570 |
+
else:
|
| 571 |
+
image_features = self.backbone(
|
| 572 |
+
images.to(device=self.device, dtype=self.dtype),
|
| 573 |
+
)
|
| 574 |
+
|
| 575 |
+
return {
|
| 576 |
+
"image_features": image_features,
|
| 577 |
+
"last_feat": image_features[-1],
|
| 578 |
+
}
|
| 579 |
+
|
| 580 |
+
def backbone(self, images: torch.Tensor) -> Tuple[List[torch.Tensor], List[int]]:
|
| 581 |
+
"""Process the input images through the backbone network.
|
| 582 |
+
|
| 583 |
+
Inputs:
|
| 584 |
+
images (torch.Tensor): The input images.
|
| 585 |
+
|
| 586 |
+
Returns:
|
| 587 |
+
Tuple[List[torch.Tensor], List[int]]: A tuple containing a list of feature maps and a
|
| 588 |
+
ist of channels per level.
|
| 589 |
+
"""
|
| 590 |
+
with torch.no_grad():
|
| 591 |
+
results = self.basic_forward(images)
|
| 592 |
+
feature_maps = []
|
| 593 |
+
|
| 594 |
+
for _stage in results:
|
| 595 |
+
feature_maps.append(results[_stage].contiguous())
|
| 596 |
+
return feature_maps
|
| 597 |
+
|
| 598 |
+
def basic_forward(self, images):
|
| 599 |
+
results = {}
|
| 600 |
+
x = self.vision_stem(images)
|
| 601 |
+
for _idx in range(len(self.vision_stages)):
|
| 602 |
+
x = self.vision_stages[_idx](x)
|
| 603 |
+
results[f"stage_{_idx}"] = x
|
| 604 |
+
return results
|
| 605 |
+
|
| 606 |
+
@property
|
| 607 |
+
def dtype(self):
|
| 608 |
+
return self.vision_stem[0].weight.dtype
|
| 609 |
+
|
| 610 |
+
@property
|
| 611 |
+
def device(self):
|
| 612 |
+
return self.vision_stem[0].weight.device
|
| 613 |
+
|
| 614 |
+
@property
|
| 615 |
+
def config(self):
|
| 616 |
+
return self.vision_config
|
| 617 |
+
|
| 618 |
+
@property
|
| 619 |
+
def hidden_size(self):
|
| 620 |
+
return sum(self.model_channel)
|
| 621 |
+
|
| 622 |
+
if __name__ == '__main__':
|
| 623 |
+
model = ConvNextVisionEncoder()
|
| 624 |
+
print(model.state_dict().keys())
|
model.safetensors.index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modeling_chatrex.py
ADDED
|
@@ -0,0 +1,880 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import logging
|
| 3 |
+
import math
|
| 4 |
+
import os
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
from open_clip.factory import get_model_config, load_state_dict
|
| 12 |
+
from open_clip.model import (CLIPTextCfg, CLIPVisionCfg, _build_text_tower,
|
| 13 |
+
_build_vision_tower,
|
| 14 |
+
convert_to_custom_text_state_dict)
|
| 15 |
+
from open_clip.transformer import text_global_pool
|
| 16 |
+
from torch import nn
|
| 17 |
+
from torchvision.ops import roi_align
|
| 18 |
+
from transformers import (CONFIG_MAPPING, AutoConfig, AutoModel,
|
| 19 |
+
AutoModelForCausalLM, GenerationConfig,
|
| 20 |
+
PretrainedConfig, PreTrainedModel, StoppingCriteria,
|
| 21 |
+
StoppingCriteriaList)
|
| 22 |
+
from transformers.activations import ACT2FN
|
| 23 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 24 |
+
from transformers.generation import GenerationConfig
|
| 25 |
+
from transformers.modeling_utils import load_state_dict
|
| 26 |
+
from transformers.utils import logging, strtobool
|
| 27 |
+
|
| 28 |
+
from .convnext import ConvNextVisionEncoder
|
| 29 |
+
|
| 30 |
+
logger = logging.get_logger(__name__)
|
| 31 |
+
|
| 32 |
+
XLA_USE_BF16 = os.environ.get("XLA_USE_BF16", "0").upper()
|
| 33 |
+
XLA_DOWNCAST_BF16 = os.environ.get("XLA_DOWNCAST_BF16", "0").upper()
|
| 34 |
+
|
| 35 |
+
IGNORE_INDEX = -100
|
| 36 |
+
DEFAULT_PAD_TOKEN_INDEX = 0
|
| 37 |
+
IMAGE_TOKEN_INDEX = -200
|
| 38 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
| 39 |
+
|
| 40 |
+
# For Objects
|
| 41 |
+
DEFAULT_OBJECT_TOKEN = "<obj<i>>"
|
| 42 |
+
DEFAULT_OBJECT_FEATURE_TOKEN = "<objfeat>"
|
| 43 |
+
DEFAULT_OBJECT_INDEX = -300
|
| 44 |
+
|
| 45 |
+
# For Grounding
|
| 46 |
+
DEFAULT_GROUNDING_START = "<ground>"
|
| 47 |
+
DEFAULT_GROUNDING_END = "</ground>"
|
| 48 |
+
DEFAULT_GROUNDING_OBJECTS_START = "<objects>"
|
| 49 |
+
DEFAULT_GROUNDING_OBJECTS_END = "</objects>"
|
| 50 |
+
|
| 51 |
+
def is_fsdp_enabled():
|
| 52 |
+
return (
|
| 53 |
+
torch.distributed.is_available()
|
| 54 |
+
and torch.distributed.is_initialized()
|
| 55 |
+
and strtobool(os.environ.get("ACCELERATE_USE_FSDP", "False")) == 1
|
| 56 |
+
and strtobool(os.environ.get("FSDP_CPU_RAM_EFFICIENT_LOADING", "False")) == 1
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def get_token_slices(input_ids: torch.Tensor):
|
| 63 |
+
"""
|
| 64 |
+
Get slices of tokens based on special markers in the input tensor.
|
| 65 |
+
|
| 66 |
+
Args:
|
| 67 |
+
input_ids (torch.Tensor): A tensor of token IDs where IMAGE_TOKEN_INDEX represents an image token,
|
| 68 |
+
DEFAULT_OBJECT_INDEX represents an object token, and all other values represent text tokens.
|
| 69 |
+
|
| 70 |
+
Returns:
|
| 71 |
+
List[Dict[str, Any]]: A list of dictionaries where each dictionary contains the type of the
|
| 72 |
+
token slice ('text', 'image', 'object') and the span as a list of start and end indices.
|
| 73 |
+
"""
|
| 74 |
+
# define type markers and corresponding types
|
| 75 |
+
type_map = {IMAGE_TOKEN_INDEX: "image", DEFAULT_OBJECT_INDEX: "object"}
|
| 76 |
+
|
| 77 |
+
# find the positions of special markers
|
| 78 |
+
image_indices = torch.where(input_ids == IMAGE_TOKEN_INDEX)[0]
|
| 79 |
+
object_indices = torch.where(input_ids == DEFAULT_OBJECT_INDEX)[0]
|
| 80 |
+
if len(object_indices) > 0:
|
| 81 |
+
has_object = True
|
| 82 |
+
else:
|
| 83 |
+
has_object = False
|
| 84 |
+
|
| 85 |
+
# merge all the positions of special markers
|
| 86 |
+
special_indices = torch.cat((image_indices, object_indices))
|
| 87 |
+
special_indices, _ = torch.sort(special_indices)
|
| 88 |
+
special_tokens = input_ids[special_indices]
|
| 89 |
+
|
| 90 |
+
slices = []
|
| 91 |
+
start_idx = 0
|
| 92 |
+
|
| 93 |
+
for i, idx in enumerate(special_indices):
|
| 94 |
+
if start_idx < idx:
|
| 95 |
+
slices.append({"type": "text", "span": [start_idx, idx.item()]})
|
| 96 |
+
token_type = type_map[special_tokens[i].item()]
|
| 97 |
+
slices.append({"type": token_type, "span": [idx.item(), idx.item() + 1]})
|
| 98 |
+
start_idx = idx.item() + 1
|
| 99 |
+
|
| 100 |
+
if start_idx < len(input_ids):
|
| 101 |
+
slices.append({"type": "text", "span": [start_idx, len(input_ids)]})
|
| 102 |
+
|
| 103 |
+
return slices, has_object
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def prepare_inputs_labels_for_multimodal(
|
| 107 |
+
llm,
|
| 108 |
+
input_ids: torch.LongTensor = None,
|
| 109 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 110 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 111 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 112 |
+
labels: Optional[torch.LongTensor] = None,
|
| 113 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 114 |
+
bbox_feats=None,
|
| 115 |
+
extra_llm_input_embed: nn.Embedding = None,
|
| 116 |
+
**kwargs,
|
| 117 |
+
):
|
| 118 |
+
if pixel_values is None:
|
| 119 |
+
return {
|
| 120 |
+
"input_ids": input_ids,
|
| 121 |
+
"position_ids": position_ids,
|
| 122 |
+
"attention_mask": attention_mask,
|
| 123 |
+
"past_key_values": past_key_values,
|
| 124 |
+
"inputs_embeds": None,
|
| 125 |
+
"labels": labels,
|
| 126 |
+
}
|
| 127 |
+
|
| 128 |
+
_labels = labels
|
| 129 |
+
_position_ids = position_ids
|
| 130 |
+
_attention_mask = attention_mask
|
| 131 |
+
if attention_mask is None:
|
| 132 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
| 133 |
+
else:
|
| 134 |
+
attention_mask = attention_mask.bool()
|
| 135 |
+
if position_ids is None:
|
| 136 |
+
position_ids = torch.arange(
|
| 137 |
+
0, input_ids.shape[1], dtype=torch.long, device=input_ids.device
|
| 138 |
+
)
|
| 139 |
+
if labels is None:
|
| 140 |
+
labels = torch.full_like(input_ids, IGNORE_INDEX)
|
| 141 |
+
|
| 142 |
+
# remove the padding using attention_mask -- TODO: double check
|
| 143 |
+
input_ids = [
|
| 144 |
+
cur_input_ids[cur_attention_mask]
|
| 145 |
+
for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
|
| 146 |
+
]
|
| 147 |
+
labels = [
|
| 148 |
+
cur_labels[cur_attention_mask]
|
| 149 |
+
for cur_labels, cur_attention_mask in zip(labels, attention_mask)
|
| 150 |
+
]
|
| 151 |
+
|
| 152 |
+
new_inputs_embeds = []
|
| 153 |
+
new_labels = []
|
| 154 |
+
cur_image_idx = 0
|
| 155 |
+
cur_object_idx = 0
|
| 156 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
| 157 |
+
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
|
| 158 |
+
if num_images == 0:
|
| 159 |
+
cur_pixel_values = pixel_values[cur_image_idx]
|
| 160 |
+
cur_inputs_embeds_1 = llm.get_input_embeddings()(cur_input_ids)
|
| 161 |
+
cur_inputs_embeds = torch.cat(
|
| 162 |
+
[cur_inputs_embeds_1, cur_pixel_values[0:0]], dim=0
|
| 163 |
+
)
|
| 164 |
+
new_inputs_embeds.append(cur_inputs_embeds)
|
| 165 |
+
new_labels.append(labels[batch_idx])
|
| 166 |
+
cur_image_idx += 1
|
| 167 |
+
cur_object_idx += 1
|
| 168 |
+
continue
|
| 169 |
+
|
| 170 |
+
cur_labels = labels[batch_idx]
|
| 171 |
+
token_slices, has_object = get_token_slices(cur_input_ids)
|
| 172 |
+
result_input_embeddings = []
|
| 173 |
+
result_output_labels = []
|
| 174 |
+
cur_gt_bnox_indice = 0
|
| 175 |
+
for slice in token_slices:
|
| 176 |
+
slice_type = slice["type"]
|
| 177 |
+
slice_span = slice["span"]
|
| 178 |
+
if slice_type == "text":
|
| 179 |
+
cur_input_ids_noim = cur_input_ids[slice_span[0] : slice_span[1]]
|
| 180 |
+
cur_labels_noim = cur_labels[slice_span[0] : slice_span[1]]
|
| 181 |
+
cur_input_embeds = llm.get_input_embeddings()(cur_input_ids_noim)
|
| 182 |
+
result_input_embeddings.append(cur_input_embeds)
|
| 183 |
+
result_output_labels.append(cur_labels_noim)
|
| 184 |
+
elif slice_type == "image":
|
| 185 |
+
cur_input_embeds = pixel_values[cur_image_idx]
|
| 186 |
+
result_input_embeddings.append(cur_input_embeds)
|
| 187 |
+
result_output_labels.append(
|
| 188 |
+
torch.full(
|
| 189 |
+
(cur_input_embeds.shape[0],),
|
| 190 |
+
IGNORE_INDEX,
|
| 191 |
+
device=cur_labels.device,
|
| 192 |
+
dtype=cur_labels.dtype,
|
| 193 |
+
)
|
| 194 |
+
)
|
| 195 |
+
cur_image_idx += 1
|
| 196 |
+
elif slice_type == "object":
|
| 197 |
+
try:
|
| 198 |
+
result_input_embeddings.append(
|
| 199 |
+
bbox_feats[cur_object_idx][cur_gt_bnox_indice].unsqueeze(0)
|
| 200 |
+
)
|
| 201 |
+
except:
|
| 202 |
+
raise ValueError(
|
| 203 |
+
f"current boxe_feats.shape: {bbox_feats[cur_object_idx].shape}, "
|
| 204 |
+
)
|
| 205 |
+
cur_gt_bnox_indice += 1
|
| 206 |
+
result_output_labels.append(
|
| 207 |
+
torch.full(
|
| 208 |
+
(1,),
|
| 209 |
+
IGNORE_INDEX,
|
| 210 |
+
device=cur_labels.device,
|
| 211 |
+
dtype=cur_labels.dtype,
|
| 212 |
+
)
|
| 213 |
+
)
|
| 214 |
+
cur_object_idx += 1
|
| 215 |
+
result_input_embeddings = torch.cat(result_input_embeddings)
|
| 216 |
+
result_output_labels = torch.cat(result_output_labels)
|
| 217 |
+
assert len(result_output_labels) == len(result_input_embeddings)
|
| 218 |
+
new_inputs_embeds.append(result_input_embeddings)
|
| 219 |
+
new_labels.append(result_output_labels)
|
| 220 |
+
|
| 221 |
+
# Combine them
|
| 222 |
+
max_len = max(x.shape[0] for x in new_inputs_embeds)
|
| 223 |
+
batch_size = len(new_inputs_embeds)
|
| 224 |
+
|
| 225 |
+
new_inputs_embeds_padded = []
|
| 226 |
+
new_labels_padded = torch.full(
|
| 227 |
+
(batch_size, max_len),
|
| 228 |
+
IGNORE_INDEX,
|
| 229 |
+
dtype=new_labels[0].dtype,
|
| 230 |
+
device=new_labels[0].device,
|
| 231 |
+
)
|
| 232 |
+
attention_mask = torch.zeros(
|
| 233 |
+
(batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device
|
| 234 |
+
)
|
| 235 |
+
position_ids = torch.zeros(
|
| 236 |
+
(batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
for i, (cur_new_embed, cur_new_labels) in enumerate(
|
| 240 |
+
zip(new_inputs_embeds, new_labels)
|
| 241 |
+
):
|
| 242 |
+
cur_len = cur_new_embed.shape[0]
|
| 243 |
+
new_inputs_embeds_padded.append(
|
| 244 |
+
torch.cat(
|
| 245 |
+
(
|
| 246 |
+
cur_new_embed,
|
| 247 |
+
torch.zeros(
|
| 248 |
+
(max_len - cur_len, cur_new_embed.shape[1]),
|
| 249 |
+
dtype=cur_new_embed.dtype,
|
| 250 |
+
device=cur_new_embed.device,
|
| 251 |
+
),
|
| 252 |
+
),
|
| 253 |
+
dim=0,
|
| 254 |
+
)
|
| 255 |
+
)
|
| 256 |
+
if cur_len > 0:
|
| 257 |
+
new_labels_padded[i, :cur_len] = cur_new_labels
|
| 258 |
+
attention_mask[i, :cur_len] = True
|
| 259 |
+
position_ids[i, :cur_len] = torch.arange(
|
| 260 |
+
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
new_inputs_embeds = torch.stack(new_inputs_embeds_padded, dim=0)
|
| 264 |
+
|
| 265 |
+
if _labels is None:
|
| 266 |
+
new_labels = None
|
| 267 |
+
else:
|
| 268 |
+
new_labels = new_labels_padded
|
| 269 |
+
|
| 270 |
+
if _attention_mask is None:
|
| 271 |
+
attention_mask = None
|
| 272 |
+
else:
|
| 273 |
+
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
| 274 |
+
|
| 275 |
+
if _position_ids is None:
|
| 276 |
+
position_ids = None
|
| 277 |
+
|
| 278 |
+
return {
|
| 279 |
+
"input_ids": None,
|
| 280 |
+
"position_ids": position_ids,
|
| 281 |
+
"attention_mask": attention_mask,
|
| 282 |
+
"past_key_values": past_key_values,
|
| 283 |
+
"inputs_embeds": new_inputs_embeds,
|
| 284 |
+
"labels": new_labels,
|
| 285 |
+
}
|
| 286 |
+
|
| 287 |
+
class StopWordStoppingCriteria(StoppingCriteria):
|
| 288 |
+
"""StopWord stopping criteria."""
|
| 289 |
+
|
| 290 |
+
def __init__(self, tokenizer, stop_word):
|
| 291 |
+
self.tokenizer = tokenizer
|
| 292 |
+
self.stop_word = stop_word
|
| 293 |
+
self.length = len(self.stop_word)
|
| 294 |
+
|
| 295 |
+
def __call__(self, input_ids, *args, **kwargs) -> bool:
|
| 296 |
+
cur_text = self.tokenizer.decode(input_ids[0])
|
| 297 |
+
cur_text = cur_text.replace('\r', '').replace('\n', '')
|
| 298 |
+
return cur_text[-self.length:] == self.stop_word
|
| 299 |
+
|
| 300 |
+
def get_stop_criteria(
|
| 301 |
+
tokenizer,
|
| 302 |
+
stop_words=[],
|
| 303 |
+
):
|
| 304 |
+
stop_criteria = StoppingCriteriaList()
|
| 305 |
+
for word in stop_words:
|
| 306 |
+
stop_criteria.append(StopWordStoppingCriteria(tokenizer, word))
|
| 307 |
+
return stop_criteria
|
| 308 |
+
|
| 309 |
+
class DualPathFuseModule(nn.Module):
|
| 310 |
+
# change channel+gate+sum
|
| 311 |
+
def __init__(self, low_res_dim, high_res_dim, zero_init=True):
|
| 312 |
+
super().__init__()
|
| 313 |
+
|
| 314 |
+
self.slow_conv = nn.Conv2d(high_res_dim, high_res_dim, 1)
|
| 315 |
+
self.slow_proj = nn.Conv2d(high_res_dim, low_res_dim, 1)
|
| 316 |
+
|
| 317 |
+
self.fast_conv = nn.Conv2d(
|
| 318 |
+
low_res_dim, low_res_dim, 7, padding=3, groups=low_res_dim
|
| 319 |
+
)
|
| 320 |
+
self.fast_proj = nn.Conv2d(low_res_dim, low_res_dim, 1)
|
| 321 |
+
|
| 322 |
+
self.gate = nn.Sequential(
|
| 323 |
+
nn.Linear(low_res_dim * 2, low_res_dim // 2),
|
| 324 |
+
nn.GELU(),
|
| 325 |
+
nn.Linear(low_res_dim // 2, 1),
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
nn.init.xavier_uniform_(self.slow_conv.weight)
|
| 329 |
+
nn.init.xavier_uniform_(self.fast_conv.weight)
|
| 330 |
+
nn.init.zeros_(self.slow_conv.bias)
|
| 331 |
+
nn.init.zeros_(self.fast_conv.bias)
|
| 332 |
+
if zero_init:
|
| 333 |
+
nn.init.zeros_(self.slow_proj.weight)
|
| 334 |
+
nn.init.zeros_(self.fast_proj.weight)
|
| 335 |
+
else:
|
| 336 |
+
nn.init.xavier_uniform_(self.slow_proj.weight)
|
| 337 |
+
nn.init.xavier_uniform_(self.fast_proj.weight)
|
| 338 |
+
nn.init.zeros_(self.slow_proj.bias)
|
| 339 |
+
nn.init.zeros_(self.fast_proj.bias)
|
| 340 |
+
|
| 341 |
+
def forward(self, low_res_feat, high_res_feat, sampler=None):
|
| 342 |
+
b, c, h, w = high_res_feat.shape # (2, 1536, 24, 24)
|
| 343 |
+
_, _, d = low_res_feat.shape # (2, 576, 1024)
|
| 344 |
+
high_res_feat = self.slow_proj(
|
| 345 |
+
F.gelu(self.slow_conv(high_res_feat))
|
| 346 |
+
) # (2, 1024, 24, 24)
|
| 347 |
+
high_res_feat = high_res_feat.view(b, d, -1).transpose(1, 2) # (2, 576, 1024)
|
| 348 |
+
dst_size = int(math.sqrt(low_res_feat.shape[1])) # 24
|
| 349 |
+
low_res_feat = low_res_feat.transpose(1, 2).view(
|
| 350 |
+
b, d, dst_size, dst_size
|
| 351 |
+
) # (2, 1024, 24, 24)
|
| 352 |
+
low_res_feat = low_res_feat + self.fast_proj(
|
| 353 |
+
F.gelu(self.fast_conv(low_res_feat))
|
| 354 |
+
)
|
| 355 |
+
low_res_feat = low_res_feat.view(b, d, dst_size * dst_size).transpose(
|
| 356 |
+
1, 2
|
| 357 |
+
) # (2, 576, 1024)
|
| 358 |
+
gate = self.gate(
|
| 359 |
+
torch.cat([low_res_feat, high_res_feat], -1).mean(1)
|
| 360 |
+
).unsqueeze(
|
| 361 |
+
1
|
| 362 |
+
) # (2, 1, 1)
|
| 363 |
+
low_res_feat = low_res_feat + high_res_feat * gate.tanh()
|
| 364 |
+
return low_res_feat
|
| 365 |
+
|
| 366 |
+
class ProjectorConfig(PretrainedConfig):
|
| 367 |
+
model_type = "projector"
|
| 368 |
+
_auto_class = "AutoConfig"
|
| 369 |
+
|
| 370 |
+
def __init__(
|
| 371 |
+
self,
|
| 372 |
+
visual_hidden_size=4096,
|
| 373 |
+
llm_hidden_size=4096,
|
| 374 |
+
depth=2,
|
| 375 |
+
hidden_act="gelu",
|
| 376 |
+
bias=True,
|
| 377 |
+
**kwargs,
|
| 378 |
+
):
|
| 379 |
+
self.visual_hidden_size = visual_hidden_size
|
| 380 |
+
self.llm_hidden_size = llm_hidden_size
|
| 381 |
+
self.depth = depth
|
| 382 |
+
self.hidden_act = hidden_act
|
| 383 |
+
self.bias = bias
|
| 384 |
+
super().__init__(**kwargs)
|
| 385 |
+
|
| 386 |
+
class ProjectorModel(PreTrainedModel):
|
| 387 |
+
_auto_class = "AutoModel"
|
| 388 |
+
config_class = ProjectorConfig
|
| 389 |
+
base_model_prefix = "model"
|
| 390 |
+
supports_gradient_checkpointing = True
|
| 391 |
+
_no_split_modules = []
|
| 392 |
+
|
| 393 |
+
def __init__(self, config: ProjectorConfig) -> None:
|
| 394 |
+
super().__init__(config)
|
| 395 |
+
self.gradient_checkpointing = False
|
| 396 |
+
|
| 397 |
+
modules = [
|
| 398 |
+
nn.Linear(
|
| 399 |
+
config.visual_hidden_size, config.llm_hidden_size, bias=config.bias
|
| 400 |
+
)
|
| 401 |
+
]
|
| 402 |
+
for _ in range(1, config.depth):
|
| 403 |
+
modules.append(ACT2FN[config.hidden_act])
|
| 404 |
+
modules.append(
|
| 405 |
+
nn.Linear(
|
| 406 |
+
config.llm_hidden_size, config.llm_hidden_size, bias=config.bias
|
| 407 |
+
)
|
| 408 |
+
)
|
| 409 |
+
self.model = nn.Sequential(*modules)
|
| 410 |
+
|
| 411 |
+
def enable_input_require_grads(self):
|
| 412 |
+
|
| 413 |
+
def make_inputs_require_grad(module, input, output):
|
| 414 |
+
output.requires_grad_(True)
|
| 415 |
+
|
| 416 |
+
self.model.register_forward_hook(make_inputs_require_grad)
|
| 417 |
+
|
| 418 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 419 |
+
if isinstance(module, ProjectorModel):
|
| 420 |
+
module.gradient_checkpointing = value
|
| 421 |
+
|
| 422 |
+
def forward(self, x):
|
| 423 |
+
layer_outputs = self.model(x)
|
| 424 |
+
return layer_outputs
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
def gen_sineembed_for_position(pos_tensor, dim_of_pos_feats):
|
| 428 |
+
"""Generate sine position embedding from a position tensor.
|
| 429 |
+
|
| 430 |
+
Args:
|
| 431 |
+
pos_tensor (torch.Tensor): shape: [batch_size, N, 4]. the last dimension is [cx, cy, w, h] in
|
| 432 |
+
normalized coordinates in range [0, 1].
|
| 433 |
+
out_dim (int): the output dimension of the position embedding.
|
| 434 |
+
|
| 435 |
+
Returns:
|
| 436 |
+
pos (torch.Tensor): shape: [batch_size, N, out_dim].
|
| 437 |
+
"""
|
| 438 |
+
scale = 2 * math.pi
|
| 439 |
+
dim_t = torch.arange(
|
| 440 |
+
dim_of_pos_feats, dtype=torch.float32, device=pos_tensor.device
|
| 441 |
+
)
|
| 442 |
+
dim_t = 10000 ** (2 * (dim_t // 2) / dim_of_pos_feats)
|
| 443 |
+
x_embed = pos_tensor[:, :, 0] * scale
|
| 444 |
+
y_embed = pos_tensor[:, :, 1] * scale
|
| 445 |
+
pos_x = x_embed[:, :, None] / dim_t
|
| 446 |
+
pos_y = y_embed[:, :, None] / dim_t
|
| 447 |
+
pos_x = torch.stack(
|
| 448 |
+
(pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3
|
| 449 |
+
).flatten(2)
|
| 450 |
+
pos_y = torch.stack(
|
| 451 |
+
(pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3
|
| 452 |
+
).flatten(2)
|
| 453 |
+
if pos_tensor.size(-1) == 2:
|
| 454 |
+
pos = torch.cat((pos_y, pos_x), dim=2)
|
| 455 |
+
elif pos_tensor.size(-1) == 4:
|
| 456 |
+
w_embed = pos_tensor[:, :, 2] * scale
|
| 457 |
+
pos_w = w_embed[:, :, None] / dim_t
|
| 458 |
+
pos_w = torch.stack(
|
| 459 |
+
(pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3
|
| 460 |
+
).flatten(2)
|
| 461 |
+
|
| 462 |
+
h_embed = pos_tensor[:, :, 3] * scale
|
| 463 |
+
pos_h = h_embed[:, :, None] / dim_t
|
| 464 |
+
pos_h = torch.stack(
|
| 465 |
+
(pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3
|
| 466 |
+
).flatten(2)
|
| 467 |
+
|
| 468 |
+
pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2)
|
| 469 |
+
else:
|
| 470 |
+
raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1)))
|
| 471 |
+
return pos
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
class MultiLevelROIVisualPrompt(nn.Module):
|
| 475 |
+
"""Initialize the MultiLevelROIVisualPrompt.
|
| 476 |
+
|
| 477 |
+
Args:
|
| 478 |
+
output_size (Optional[int]): The size of the output. Default is None.
|
| 479 |
+
channel_per_level (List[int]): List of channels per level. Default is [192, 384, 768, 1536].
|
| 480 |
+
spatial_scale (Optional[float]): The spatial scale factor. Default is None.
|
| 481 |
+
with_additional_projection (bool): Whether to use additional projection. Default is False.
|
| 482 |
+
visual_prompt_hidden_size (int): The hidden size of the visual prompt. Default is 1024.
|
| 483 |
+
add_pos_embedding (bool): Whether to add position embedding. Default is False.
|
| 484 |
+
pos_embedding_dim (int): The dimension of the position embedding. Default is 1024.
|
| 485 |
+
"""
|
| 486 |
+
|
| 487 |
+
def __init__(
|
| 488 |
+
self,
|
| 489 |
+
output_size: int = None,
|
| 490 |
+
channel_per_level: List[int] = [192, 384, 768, 1536],
|
| 491 |
+
spatail_scale: float = None,
|
| 492 |
+
visual_prompt_hidden_size: bool = 1024,
|
| 493 |
+
add_pos_embedding: bool = False,
|
| 494 |
+
pos_embedding_dim: int = 1024,
|
| 495 |
+
):
|
| 496 |
+
super(MultiLevelROIVisualPrompt, self).__init__()
|
| 497 |
+
self.output_size = output_size
|
| 498 |
+
self.channel_per_level = channel_per_level
|
| 499 |
+
self.spatail_scale = spatail_scale
|
| 500 |
+
self.add_pos_embedding = add_pos_embedding
|
| 501 |
+
self.pos_embedding_dim = pos_embedding_dim
|
| 502 |
+
|
| 503 |
+
def __call__(
|
| 504 |
+
self,
|
| 505 |
+
multi_level_features: List[torch.Tensor],
|
| 506 |
+
boxes: Union[torch.Tensor, List[torch.Tensor]],
|
| 507 |
+
) -> torch.Tensor:
|
| 508 |
+
"""Performs Region of Interest (RoI) Align operator on multi-level features. The RoI
|
| 509 |
+
feature on each scale will go through a different linear layer for projection. Different
|
| 510 |
+
RoI features will be summed up and then average pooled.
|
| 511 |
+
|
| 512 |
+
Args:
|
| 513 |
+
multi_level_features (Listp[Tensor[N, C, H, W]]): Feature maps from different levels
|
| 514 |
+
boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
|
| 515 |
+
format where the regions will be taken from.
|
| 516 |
+
Returns:
|
| 517 |
+
Tensor[1, K, C]: The output tensor that has the shape KxC, where K is the number of RoIs
|
| 518 |
+
"""
|
| 519 |
+
boxes[0] = boxes[0].float()
|
| 520 |
+
concat_multi_level_feature = []
|
| 521 |
+
max_height = max([feature.shape[2] for feature in multi_level_features])
|
| 522 |
+
max_width = max([feature.shape[3] for feature in multi_level_features])
|
| 523 |
+
# interpolate to the same size
|
| 524 |
+
for level, feature in enumerate(multi_level_features):
|
| 525 |
+
if level != 0:
|
| 526 |
+
concat_multi_level_feature.append(
|
| 527 |
+
F.interpolate(
|
| 528 |
+
feature.float(),
|
| 529 |
+
size=(max_height, max_width),
|
| 530 |
+
mode="bilinear",
|
| 531 |
+
align_corners=False,
|
| 532 |
+
)
|
| 533 |
+
)
|
| 534 |
+
else:
|
| 535 |
+
concat_multi_level_feature.append(feature.float())
|
| 536 |
+
concat_multi_level_feature = torch.cat(concat_multi_level_feature, dim=1)
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
out_box_feat = roi_align(
|
| 540 |
+
concat_multi_level_feature,
|
| 541 |
+
boxes,
|
| 542 |
+
output_size=self.output_size,
|
| 543 |
+
spatial_scale=self.spatail_scale,
|
| 544 |
+
)
|
| 545 |
+
|
| 546 |
+
# Average Pooling -> n,c -> 1,n,c
|
| 547 |
+
out_box_feat = out_box_feat.mean(dim=(2, 3)).reshape(
|
| 548 |
+
1, out_box_feat.shape[0], out_box_feat.shape[1]
|
| 549 |
+
)
|
| 550 |
+
if self.add_pos_embedding:
|
| 551 |
+
# note that this boxes is in xyxy, unormalized format, so we need to normalize it first
|
| 552 |
+
boxes = boxes[0] # (N, 4)
|
| 553 |
+
boxes = boxes.to(out_box_feat.dtype)
|
| 554 |
+
original_img_width = max_width / self.spatail_scale
|
| 555 |
+
original_img_height = max_height / self.spatail_scale
|
| 556 |
+
boxes[:, [0, 2]] = boxes[:, [0, 2]] / original_img_width
|
| 557 |
+
boxes[:, [1, 3]] = boxes[:, [1, 3]] / original_img_height
|
| 558 |
+
# convert from xyxy to cx, cy, w, h
|
| 559 |
+
boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
|
| 560 |
+
boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
|
| 561 |
+
boxes[:, 0] = boxes[:, 0] + boxes[:, 2] / 2
|
| 562 |
+
boxes[:, 1] = boxes[:, 1] + boxes[:, 3] / 2
|
| 563 |
+
pos_embed = gen_sineembed_for_position(
|
| 564 |
+
boxes.unsqueeze(0), self.pos_embedding_dim // 4
|
| 565 |
+
)
|
| 566 |
+
out_box_feat = out_box_feat + pos_embed
|
| 567 |
+
|
| 568 |
+
return out_box_feat
|
| 569 |
+
|
| 570 |
+
|
| 571 |
+
|
| 572 |
+
class ChatRexAuxConfig(PretrainedConfig):
|
| 573 |
+
r"""
|
| 574 |
+
This is the configuration class to store the configuration of ChatRexAux model.
|
| 575 |
+
|
| 576 |
+
|
| 577 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 578 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 579 |
+
|
| 580 |
+
Args:
|
| 581 |
+
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`):
|
| 582 |
+
The config object or dictionary of the vision backbone.
|
| 583 |
+
vision_aux_config (`Union[AutoConfig, dict]`, *optional*, defaults to `OpenCLIPVisionTower`):
|
| 584 |
+
visual_prompt_encoder (`Union[AutoConfig, dict]`, *optional*, defaults to `MultiLevelROIVisualPrompt`):
|
| 585 |
+
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`):
|
| 586 |
+
The config object or dictionary of the text backbone.
|
| 587 |
+
ignore_index (`int`, *optional*, defaults to -100):
|
| 588 |
+
The ignore index for the loss function.
|
| 589 |
+
image_token_index (`int`, *optional*, defaults to 32000):
|
| 590 |
+
The image token index to encode the image prompt.
|
| 591 |
+
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
|
| 592 |
+
The activation function used by the multimodal projector.
|
| 593 |
+
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
|
| 594 |
+
The feature selection strategy used to select the vision feature from the vision backbone.
|
| 595 |
+
Can be one of `"default"` or `"full"`.
|
| 596 |
+
vision_feature_layer (`int`, *optional*, defaults to -2):
|
| 597 |
+
The index of the layer to select the vision feature.
|
| 598 |
+
|
| 599 |
+
Example:
|
| 600 |
+
|
| 601 |
+
```python
|
| 602 |
+
>>> from transformers import LlavaForConditionalGeneration, LlavaConfig, CLIPVisionConfig, LlamaConfig
|
| 603 |
+
|
| 604 |
+
>>> # Initializing a CLIP-vision config
|
| 605 |
+
>>> vision_config = CLIPVisionConfig()
|
| 606 |
+
|
| 607 |
+
>>> # Initializing a Llama config
|
| 608 |
+
>>> text_config = LlamaConfig()
|
| 609 |
+
|
| 610 |
+
>>> # Initializing a Llava llava-1.5-7b style configuration
|
| 611 |
+
>>> configuration = LlavaConfig(vision_config, text_config)
|
| 612 |
+
|
| 613 |
+
>>> # Initializing a model from the llava-1.5-7b style configuration
|
| 614 |
+
>>> model = LlavaForConditionalGeneration(configuration)
|
| 615 |
+
|
| 616 |
+
>>> # Accessing the model configuration
|
| 617 |
+
>>> configuration = model.config
|
| 618 |
+
```"""
|
| 619 |
+
|
| 620 |
+
model_type = "chatrex"
|
| 621 |
+
is_composition = False
|
| 622 |
+
|
| 623 |
+
def __init__(
|
| 624 |
+
self,
|
| 625 |
+
vision_config=None,
|
| 626 |
+
vision_aux_config=None,
|
| 627 |
+
visual_prompt_encoder_config=None,
|
| 628 |
+
text_config=None,
|
| 629 |
+
ignore_index=-100,
|
| 630 |
+
image_token_index=32000,
|
| 631 |
+
projector_hidden_act="gelu",
|
| 632 |
+
vision_feature_select_strategy="default",
|
| 633 |
+
vision_feature_layer=-2,
|
| 634 |
+
projector_depth=2,
|
| 635 |
+
visual_prompt_hidden_size=2880,
|
| 636 |
+
**kwargs,
|
| 637 |
+
):
|
| 638 |
+
self.ignore_index = ignore_index
|
| 639 |
+
self.image_token_index = image_token_index
|
| 640 |
+
self.projector_hidden_act = projector_hidden_act
|
| 641 |
+
self.projector_depth = projector_depth
|
| 642 |
+
self.visual_prompt_hidden_size = visual_prompt_hidden_size
|
| 643 |
+
self.visual_prompt_encoder_config = visual_prompt_encoder_config
|
| 644 |
+
|
| 645 |
+
if vision_feature_select_strategy not in ["default", "full"]:
|
| 646 |
+
raise ValueError(
|
| 647 |
+
"vision_feature_select_strategy should be one of 'default', 'full'."
|
| 648 |
+
f"Got: {vision_feature_select_strategy}"
|
| 649 |
+
)
|
| 650 |
+
|
| 651 |
+
self.vision_feature_select_strategy = vision_feature_select_strategy
|
| 652 |
+
self.vision_feature_layer = vision_feature_layer
|
| 653 |
+
|
| 654 |
+
if isinstance(vision_config, dict):
|
| 655 |
+
vision_config["model_type"] = (
|
| 656 |
+
vision_config["model_type"]
|
| 657 |
+
if "model_type" in vision_config
|
| 658 |
+
else "clip_vision_model"
|
| 659 |
+
)
|
| 660 |
+
vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
|
| 661 |
+
elif vision_config is None:
|
| 662 |
+
vision_config = CONFIG_MAPPING["clip_vision_model"](
|
| 663 |
+
intermediate_size=4096,
|
| 664 |
+
hidden_size=1024,
|
| 665 |
+
patch_size=14,
|
| 666 |
+
image_size=336,
|
| 667 |
+
num_hidden_layers=24,
|
| 668 |
+
num_attention_heads=16,
|
| 669 |
+
vocab_size=32000,
|
| 670 |
+
projection_dim=768,
|
| 671 |
+
)
|
| 672 |
+
|
| 673 |
+
self.vision_config = vision_config
|
| 674 |
+
self.vision_aux_config = vision_aux_config
|
| 675 |
+
|
| 676 |
+
if isinstance(text_config, dict):
|
| 677 |
+
text_config["model_type"] = (
|
| 678 |
+
text_config["model_type"] if "model_type" in text_config else "llama"
|
| 679 |
+
)
|
| 680 |
+
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
|
| 681 |
+
elif text_config is None:
|
| 682 |
+
text_config = CONFIG_MAPPING["llama"]()
|
| 683 |
+
|
| 684 |
+
self.text_config = text_config
|
| 685 |
+
|
| 686 |
+
super().__init__(**kwargs)
|
| 687 |
+
|
| 688 |
+
|
| 689 |
+
class ChatRexAuxPreTrainedModel(PreTrainedModel):
|
| 690 |
+
config_class = ChatRexAuxConfig
|
| 691 |
+
base_model_prefix = "model"
|
| 692 |
+
supports_gradient_checkpointing = True
|
| 693 |
+
_no_split_modules = ["LlavaVisionAttention"]
|
| 694 |
+
_skip_keys_device_placement = "past_key_values"
|
| 695 |
+
_supports_flash_attn_2 = True
|
| 696 |
+
_supports_cache_class = True
|
| 697 |
+
|
| 698 |
+
# def _init_weights(self, module):
|
| 699 |
+
# # important: this ported version of Llava isn't meant for training from scratch - only
|
| 700 |
+
# # inference and fine-tuning - so the proper init weights code has been removed - the original codebase
|
| 701 |
+
# # https://github.com/haotian-liu/LLaVA/tree/main/llava should serve for that purpose
|
| 702 |
+
# std = (
|
| 703 |
+
# self.config.initializer_range
|
| 704 |
+
# if hasattr(self.config, "initializer_range")
|
| 705 |
+
# else self.config.text_config.initializer_range
|
| 706 |
+
# )
|
| 707 |
+
|
| 708 |
+
# if hasattr(module, "class_embedding"):
|
| 709 |
+
# module.class_embedding.data.normal_(mean=0.0, std=std)
|
| 710 |
+
|
| 711 |
+
# if isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 712 |
+
# module.weight.data.normal_(mean=0.0, std=std)
|
| 713 |
+
# if module.bias is not None:
|
| 714 |
+
# module.bias.data.zero_()
|
| 715 |
+
# elif isinstance(module, nn.Embedding):
|
| 716 |
+
# module.weight.data.normal_(mean=0.0, std=std)
|
| 717 |
+
# if module.padding_idx is not None:
|
| 718 |
+
# module.weight.data[module.padding_idx].zero_()
|
| 719 |
+
|
| 720 |
+
@property
|
| 721 |
+
def _supports_sdpa(self):
|
| 722 |
+
"""
|
| 723 |
+
Retrieve language_model's attribute to check whether the model supports
|
| 724 |
+
SDPA or not.
|
| 725 |
+
"""
|
| 726 |
+
return self.language_model._supports_sdpa
|
| 727 |
+
|
| 728 |
+
|
| 729 |
+
class ChatRexAuxForConditionalGeneration(ChatRexAuxPreTrainedModel):
|
| 730 |
+
|
| 731 |
+
def __init__(self, config: ChatRexAuxConfig):
|
| 732 |
+
super().__init__(config)
|
| 733 |
+
# low resolusion vision encoder
|
| 734 |
+
self.vision_encoder = AutoModel.from_config(config.vision_config)
|
| 735 |
+
# high resolusion vision encoder
|
| 736 |
+
self.vision_encoder_aux = ConvNextVisionEncoder()
|
| 737 |
+
|
| 738 |
+
# vision projector
|
| 739 |
+
projector_config = ProjectorConfig(
|
| 740 |
+
visual_hidden_size=config.vision_config.hidden_size,
|
| 741 |
+
llm_hidden_size=config.text_config.hidden_size,
|
| 742 |
+
depth=config.projector_depth,
|
| 743 |
+
)
|
| 744 |
+
self.projector = ProjectorModel(projector_config)
|
| 745 |
+
|
| 746 |
+
# visual prompt encoder
|
| 747 |
+
vp_projector_config = ProjectorConfig(
|
| 748 |
+
visual_hidden_size=config.visual_prompt_hidden_size,
|
| 749 |
+
llm_hidden_size=config.text_config.hidden_size,
|
| 750 |
+
depth=config.projector_depth,
|
| 751 |
+
)
|
| 752 |
+
self.vp_projector = ProjectorModel(vp_projector_config)
|
| 753 |
+
|
| 754 |
+
# fuser
|
| 755 |
+
self.fuser = DualPathFuseModule(
|
| 756 |
+
low_res_dim=config.vision_config.hidden_size,
|
| 757 |
+
high_res_dim=1536,
|
| 758 |
+
)
|
| 759 |
+
|
| 760 |
+
# visual prompt encoder
|
| 761 |
+
self.vp_encoder = MultiLevelROIVisualPrompt(
|
| 762 |
+
output_size=7,
|
| 763 |
+
channel_per_level=[192, 384, 768, 1536],
|
| 764 |
+
spatail_scale=192 / 768,
|
| 765 |
+
add_pos_embedding=True,
|
| 766 |
+
pos_embedding_dim=2880,
|
| 767 |
+
)
|
| 768 |
+
|
| 769 |
+
# genconfig
|
| 770 |
+
self.gen_config = None
|
| 771 |
+
|
| 772 |
+
self.vocab_size = config.text_config.vocab_size
|
| 773 |
+
self.llm = AutoModelForCausalLM.from_config(
|
| 774 |
+
config.text_config, attn_implementation=config._attn_implementation
|
| 775 |
+
)
|
| 776 |
+
self.pad_token_id = (
|
| 777 |
+
self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
| 778 |
+
)
|
| 779 |
+
self.post_init()
|
| 780 |
+
|
| 781 |
+
|
| 782 |
+
def _prepare_data_for_llm(self, data):
|
| 783 |
+
if "pixel_values" in data:
|
| 784 |
+
visual_outputs = self.vision_encoder(
|
| 785 |
+
data["pixel_values"].to(self.vision_encoder.dtype),
|
| 786 |
+
output_hidden_states=True,
|
| 787 |
+
)
|
| 788 |
+
if type(self.vision_encoder).__name__ in [
|
| 789 |
+
"CLIPVisionModel",
|
| 790 |
+
"CLIPVisionModelAnyRes",
|
| 791 |
+
]:
|
| 792 |
+
visual_outputs = visual_outputs.hidden_states[-2][
|
| 793 |
+
:, 1:
|
| 794 |
+
]
|
| 795 |
+
elif type(self.vision_encoder).__name__ == "SiglipVisionModel":
|
| 796 |
+
visual_outputs = visual_outputs.hidden_states[-2]
|
| 797 |
+
else:
|
| 798 |
+
raise NotImplementedError
|
| 799 |
+
|
| 800 |
+
# aux encoder
|
| 801 |
+
if self.vision_encoder_aux is not None:
|
| 802 |
+
pixels_aux = []
|
| 803 |
+
for pixels in data["pixel_values_aux"]:
|
| 804 |
+
if pixels.dim() == 3:
|
| 805 |
+
pixels = pixels.unsqueeze(0)
|
| 806 |
+
elif pixels.dim() == 4:
|
| 807 |
+
pixels = pixels.permute(1, 0, 2, 3)
|
| 808 |
+
pixels_aux.append(pixels)
|
| 809 |
+
visual_outputs_aux = torch.cat(
|
| 810 |
+
pixels_aux, dim=0
|
| 811 |
+
) # shape (2, 3, 768, 768)
|
| 812 |
+
aux_output = self.vision_encoder_aux(
|
| 813 |
+
visual_outputs_aux
|
| 814 |
+
)
|
| 815 |
+
visual_outputs_aux = aux_output["image_features"]
|
| 816 |
+
last_feat = aux_output["last_feat"] # (B, 1536, 24, 24)
|
| 817 |
+
# fuser
|
| 818 |
+
fuse_features = self.fuser(
|
| 819 |
+
low_res_feat=visual_outputs, high_res_feat=last_feat
|
| 820 |
+
) # (2, 576, 1024)
|
| 821 |
+
pixel_values = self.projector(fuse_features)
|
| 822 |
+
data["pixel_values"] = pixel_values
|
| 823 |
+
|
| 824 |
+
# extract visual prompt features
|
| 825 |
+
bbox_visual_outputs = []
|
| 826 |
+
if "gt_boxes" in data:
|
| 827 |
+
for batch_idx, boxes in enumerate(data["gt_boxes"]):
|
| 828 |
+
if len(boxes) == 0:
|
| 829 |
+
bbox_visual_outputs.append(None)
|
| 830 |
+
continue
|
| 831 |
+
multi_level_aux_features = [
|
| 832 |
+
visual_output_aux[batch_idx].unsqueeze(0)
|
| 833 |
+
for visual_output_aux in visual_outputs_aux
|
| 834 |
+
]
|
| 835 |
+
boxes = boxes.to(torch.float32)
|
| 836 |
+
out_vp_feat = self.vp_encoder(
|
| 837 |
+
multi_level_aux_features,
|
| 838 |
+
[boxes],
|
| 839 |
+
).squeeze(0)
|
| 840 |
+
out_vp_feat = out_vp_feat.to(pixel_values.dtype)
|
| 841 |
+
out_vp_feat = self.vp_projector(out_vp_feat)
|
| 842 |
+
bbox_visual_outputs.append(out_vp_feat)
|
| 843 |
+
# b,n,c
|
| 844 |
+
data["bbox_feats"] = bbox_visual_outputs
|
| 845 |
+
|
| 846 |
+
data = prepare_inputs_labels_for_multimodal(llm=self.llm, **data)
|
| 847 |
+
return data
|
| 848 |
+
|
| 849 |
+
|
| 850 |
+
def generate(self, data_dict: Dict[str, Any], gen_config=None, tokenizer=None):
|
| 851 |
+
"""Perform inference on the given data.
|
| 852 |
+
|
| 853 |
+
Args:
|
| 854 |
+
data_dict (Dict[str, Any]): The data to perform inference on.
|
| 855 |
+
|
| 856 |
+
Returns:
|
| 857 |
+
str: The answer to the question.
|
| 858 |
+
"""
|
| 859 |
+
data_dict = self._prepare_data_for_llm(data_dict)
|
| 860 |
+
data_dict["inputs_embeds"] = data_dict["inputs_embeds"].to(self.llm.dtype)
|
| 861 |
+
stop_criteria = get_stop_criteria(
|
| 862 |
+
tokenizer=tokenizer, stop_words=[]
|
| 863 |
+
)
|
| 864 |
+
generate_output = self.llm.generate(
|
| 865 |
+
**data_dict,
|
| 866 |
+
generation_config=self.gen_config if gen_config is None else gen_config,
|
| 867 |
+
streamer=None,
|
| 868 |
+
bos_token_id=tokenizer.bos_token_id,
|
| 869 |
+
stopping_criteria=stop_criteria,
|
| 870 |
+
)
|
| 871 |
+
print(f'generate_output:', generate_output)
|
| 872 |
+
prediction = tokenizer.decode(
|
| 873 |
+
generate_output[0], skip_special_tokens=False
|
| 874 |
+
).strip()
|
| 875 |
+
prediction = prediction.replace("<s>", "").replace("</s>", "").strip()
|
| 876 |
+
return prediction
|
| 877 |
+
|
| 878 |
+
|
| 879 |
+
AutoConfig.register("chatrex", ChatRexAuxConfig)
|
| 880 |
+
AutoModelForCausalLM.register(ChatRexAuxConfig, ChatRexAuxForConditionalGeneration)
|
preprocessing_chatrex.py
ADDED
|
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Processor class for Molmo.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from typing import Optional
|
| 6 |
+
|
| 7 |
+
import PIL
|
| 8 |
+
from PIL import Image
|
| 9 |
+
|
| 10 |
+
try:
|
| 11 |
+
from typing import Unpack
|
| 12 |
+
except ImportError:
|
| 13 |
+
from typing_extensions import Unpack
|
| 14 |
+
|
| 15 |
+
import re
|
| 16 |
+
from typing import List, Optional, Union
|
| 17 |
+
|
| 18 |
+
import numpy as np
|
| 19 |
+
import torch
|
| 20 |
+
import torchvision.transforms.functional as F
|
| 21 |
+
from transformers import AutoTokenizer
|
| 22 |
+
from transformers.image_utils import ImageInput
|
| 23 |
+
from transformers.processing_utils import (ProcessingKwargs, ProcessorMixin,
|
| 24 |
+
TextKwargs)
|
| 25 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
| 26 |
+
from transformers.utils import logging
|
| 27 |
+
|
| 28 |
+
logger = logging.get_logger(__name__)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
IGNORE_INDEX = -100
|
| 33 |
+
DEFAULT_PAD_TOKEN_INDEX = 0
|
| 34 |
+
IMAGE_TOKEN_INDEX = -200
|
| 35 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
| 36 |
+
|
| 37 |
+
# For Objects
|
| 38 |
+
DEFAULT_OBJECT_TOKEN = "<obj<i>>"
|
| 39 |
+
DEFAULT_OBJECT_FEATURE_TOKEN = "<objfeat>"
|
| 40 |
+
DEFAULT_OBJECT_INDEX = -300
|
| 41 |
+
|
| 42 |
+
# For Grounding
|
| 43 |
+
DEFAULT_GROUNDING_START = "<ground>"
|
| 44 |
+
DEFAULT_GROUNDING_END = "</ground>"
|
| 45 |
+
DEFAULT_GROUNDING_OBJECTS_START = "<objects>"
|
| 46 |
+
DEFAULT_GROUNDING_OBJECTS_END = "</objects>"
|
| 47 |
+
|
| 48 |
+
def xyxy_to_xywh(boxes):
|
| 49 |
+
"""
|
| 50 |
+
Convert boxes from xywh to xyxy format.
|
| 51 |
+
|
| 52 |
+
Parameters:
|
| 53 |
+
boxes (numpy.ndarray): An array of shape (N, 4) where N is the number of boxes.
|
| 54 |
+
Each box is represented as [x, y, x, y].
|
| 55 |
+
|
| 56 |
+
Returns:
|
| 57 |
+
numpy.ndarray: An array of shape (N, 4) where each box is represented as [x_min, y_min, w, h].
|
| 58 |
+
"""
|
| 59 |
+
boxes = np.array(boxes)
|
| 60 |
+
x_min, y_min, x_max, y_max = (
|
| 61 |
+
boxes[:, 0],
|
| 62 |
+
boxes[:, 1],
|
| 63 |
+
boxes[:, 2],
|
| 64 |
+
boxes[:, 3],
|
| 65 |
+
)
|
| 66 |
+
w = x_max - x_min
|
| 67 |
+
h = y_max - y_min
|
| 68 |
+
return np.stack([x_min, y_min, w, h], axis=1)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def xywh_to_xyxy(boxes):
|
| 72 |
+
"""
|
| 73 |
+
Convert boxes from xywh to xyxy format.
|
| 74 |
+
|
| 75 |
+
Parameters:
|
| 76 |
+
boxes (numpy.ndarray): An array of shape (N, 4) where N is the number of boxes.
|
| 77 |
+
Each box is represented as [x, y, width, height].
|
| 78 |
+
|
| 79 |
+
Returns:
|
| 80 |
+
numpy.ndarray: An array of shape (N, 4) where each box is represented as [x_min, y_min, x_max, y_max].
|
| 81 |
+
"""
|
| 82 |
+
boxes = np.array(boxes)
|
| 83 |
+
x, y, width, height = (
|
| 84 |
+
boxes[:, 0],
|
| 85 |
+
boxes[:, 1],
|
| 86 |
+
boxes[:, 2],
|
| 87 |
+
boxes[:, 3],
|
| 88 |
+
)
|
| 89 |
+
x_max = x + width
|
| 90 |
+
y_max = y + height
|
| 91 |
+
return np.stack([x, y, x_max, y_max], axis=1)
|
| 92 |
+
|
| 93 |
+
def expand2square(pil_img, background_color):
|
| 94 |
+
width, height = pil_img.size
|
| 95 |
+
if width == height:
|
| 96 |
+
return pil_img
|
| 97 |
+
elif width > height:
|
| 98 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
| 99 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
| 100 |
+
return result
|
| 101 |
+
else:
|
| 102 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
| 103 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
| 104 |
+
return result
|
| 105 |
+
|
| 106 |
+
def pad_boxes(gt_boxes, old_size):
|
| 107 |
+
old_w, old_h = old_size
|
| 108 |
+
gt_boxes = np.array(gt_boxes).astype(np.float32)
|
| 109 |
+
# Calculate the padding added
|
| 110 |
+
if old_w > old_h:
|
| 111 |
+
pad_top = (old_w - old_h) // 2
|
| 112 |
+
pad_bottom = old_w - old_h - pad_top
|
| 113 |
+
pad_left, pad_right = 0, 0
|
| 114 |
+
else:
|
| 115 |
+
pad_left = (old_h - old_w) // 2
|
| 116 |
+
pad_right = old_h - old_w - pad_left
|
| 117 |
+
pad_top, pad_bottom = 0, 0
|
| 118 |
+
|
| 119 |
+
# Adjust the boxes for padding
|
| 120 |
+
gt_boxes[:, 0] += pad_left # x
|
| 121 |
+
gt_boxes[:, 1] += pad_top # y
|
| 122 |
+
return gt_boxes
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def resize_boxes(gt_boxes, old_size, new_size):
|
| 126 |
+
old_w, old_h = old_size
|
| 127 |
+
new_h, new_w = new_size
|
| 128 |
+
gt_boxes = np.array(gt_boxes).astype(np.float32)
|
| 129 |
+
# Calculate scale factors
|
| 130 |
+
scale_x = new_w / max(old_w, old_h)
|
| 131 |
+
scale_y = new_h / max(old_w, old_h)
|
| 132 |
+
|
| 133 |
+
# Resize the boxes
|
| 134 |
+
gt_boxes[:, 0] *= scale_x # x
|
| 135 |
+
gt_boxes[:, 1] *= scale_y # y
|
| 136 |
+
gt_boxes[:, 2] *= scale_x # w
|
| 137 |
+
gt_boxes[:, 3] *= scale_y # h
|
| 138 |
+
|
| 139 |
+
return gt_boxes
|
| 140 |
+
|
| 141 |
+
def split_special_strings(input_string: str, special_strings: list[str] = None):
|
| 142 |
+
"""Split the input string into a list of strings, keeping the special strings.
|
| 143 |
+
|
| 144 |
+
Args:
|
| 145 |
+
input_string (str): The input string to split.
|
| 146 |
+
|
| 147 |
+
Example:
|
| 148 |
+
|
| 149 |
+
input_string = "<image>\n<obj0><objfeat><obj1><objfeat>\n I am happy today."
|
| 150 |
+
output = ['<image>', '\n<obj0>', '<objfeat>', '<obj1>', '<objfeat>', '\n I am happy today.']
|
| 151 |
+
|
| 152 |
+
Returns:
|
| 153 |
+
list: A list of strings, with the special strings separated from the rest of the input string.
|
| 154 |
+
"""
|
| 155 |
+
# Create a regex pattern to match the special strings
|
| 156 |
+
pattern = "|".join(map(re.escape, special_strings))
|
| 157 |
+
|
| 158 |
+
# Split the input string using the pattern, keeping the special strings in the result
|
| 159 |
+
split_list = re.split(f"({pattern})", input_string)
|
| 160 |
+
|
| 161 |
+
# Remove empty strings from the list
|
| 162 |
+
split_list = [s for s in split_list if s]
|
| 163 |
+
|
| 164 |
+
return split_list
|
| 165 |
+
|
| 166 |
+
def tokenizer_image_object_token(prompt, tokenizer):
|
| 167 |
+
bos_token_id = tokenizer.bos_token_id
|
| 168 |
+
split_tokens = [DEFAULT_IMAGE_TOKEN, DEFAULT_OBJECT_FEATURE_TOKEN]
|
| 169 |
+
chunks = split_special_strings(prompt, split_tokens)
|
| 170 |
+
input_encode = [bos_token_id]
|
| 171 |
+
for chunk in chunks:
|
| 172 |
+
if chunk == DEFAULT_IMAGE_TOKEN:
|
| 173 |
+
input_encode.append(IMAGE_TOKEN_INDEX)
|
| 174 |
+
elif chunk == DEFAULT_OBJECT_FEATURE_TOKEN:
|
| 175 |
+
input_encode.append(DEFAULT_OBJECT_INDEX)
|
| 176 |
+
else:
|
| 177 |
+
input_encode.extend(tokenizer.encode(chunk, add_special_tokens=False))
|
| 178 |
+
return input_encode
|
| 179 |
+
|
| 180 |
+
class ChatRexProcessor(ProcessorMixin):
|
| 181 |
+
attributes = ["image_processor", "tokenizer"]
|
| 182 |
+
image_processor_class = "AutoImageProcessor"
|
| 183 |
+
tokenizer_class = "AutoTokenizer"
|
| 184 |
+
|
| 185 |
+
def __init__(self, image_processor = None, tokenizer : AutoTokenizer = None, **kwargs):
|
| 186 |
+
# self.image_processor = image_processor
|
| 187 |
+
# self.tokenizer = tokenizer
|
| 188 |
+
super().__init__(image_processor, tokenizer)
|
| 189 |
+
self._special_tokens = None
|
| 190 |
+
self.template = dict(
|
| 191 |
+
SYSTEM=('A chat between a curious user and an artificial '
|
| 192 |
+
'intelligence assistant. The assistant gives '
|
| 193 |
+
'helpful, detailed, and polite answers to the '
|
| 194 |
+
'user\'s questions. {system}\n '),
|
| 195 |
+
INSTRUCTION=('USER: {input} ASSISTANT:'),
|
| 196 |
+
SEP='\n')
|
| 197 |
+
|
| 198 |
+
def process(
|
| 199 |
+
self,
|
| 200 |
+
image: Union[str, Image.Image],
|
| 201 |
+
bbox: List[List[int]],
|
| 202 |
+
question: str,
|
| 203 |
+
):
|
| 204 |
+
"""Prepare input data for inference.
|
| 205 |
+
|
| 206 |
+
Args:
|
| 207 |
+
image (Union[str, Image.Image]): The image to process.
|
| 208 |
+
bbox (List[List[int]]): A list of bounding boxes for the image. Each bounding box should
|
| 209 |
+
be in order of [x, y, x , y].
|
| 210 |
+
question (str): The question to ask about the image.
|
| 211 |
+
"""
|
| 212 |
+
data_dict = {}
|
| 213 |
+
# step1 load image
|
| 214 |
+
if type(image) == str:
|
| 215 |
+
image = Image.open(image).convert("RGB")
|
| 216 |
+
ori_w, ori_h = F.get_image_size(image)
|
| 217 |
+
image = expand2square(
|
| 218 |
+
image,
|
| 219 |
+
tuple(int(x * 255) for x in self.image_processor.image_mean),
|
| 220 |
+
)
|
| 221 |
+
pad_w, pad_h = F.get_image_size(image)
|
| 222 |
+
image_aux = self.image_processor.preprocess(image, return_tensors="pt")[
|
| 223 |
+
"pixel_values"
|
| 224 |
+
][0]
|
| 225 |
+
resize_h, resize_w = image_aux.shape[-2:]
|
| 226 |
+
data_dict["pixel_values_aux"] = image_aux.unsqueeze(0)
|
| 227 |
+
image = image_aux.clone()
|
| 228 |
+
image = torch.nn.functional.interpolate(
|
| 229 |
+
image[None],
|
| 230 |
+
size=[336, 336],
|
| 231 |
+
mode="bilinear",
|
| 232 |
+
align_corners=False,
|
| 233 |
+
)[0]
|
| 234 |
+
data_dict["pixel_values"] = image.unsqueeze(0)
|
| 235 |
+
|
| 236 |
+
# step2 load boxes
|
| 237 |
+
bbox= xyxy_to_xywh(bbox)
|
| 238 |
+
bbox = pad_boxes(bbox, (ori_w, ori_h))
|
| 239 |
+
bbox = resize_boxes(bbox, (pad_w, pad_h), (resize_h, resize_w))
|
| 240 |
+
data_dict["gt_boxes"] = torch.tensor(xywh_to_xyxy(bbox)).unsqueeze(0)
|
| 241 |
+
|
| 242 |
+
# step3 prepare question
|
| 243 |
+
total_num_boxes = len(bbox)
|
| 244 |
+
obj_tokens = [
|
| 245 |
+
DEFAULT_OBJECT_TOKEN.replace("<i>", str(i)) for i in range(total_num_boxes)
|
| 246 |
+
]
|
| 247 |
+
obj_tokens = (
|
| 248 |
+
DEFAULT_OBJECT_FEATURE_TOKEN.join(obj_tokens) + DEFAULT_OBJECT_FEATURE_TOKEN
|
| 249 |
+
)
|
| 250 |
+
question = question.replace(DEFAULT_IMAGE_TOKEN, "")
|
| 251 |
+
question = DEFAULT_IMAGE_TOKEN + "\n" + obj_tokens + "\n" + question
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
inputs = ""
|
| 255 |
+
inputs += self.template["INSTRUCTION"].format(input=question, round=1)
|
| 256 |
+
|
| 257 |
+
# step4 tokenize question
|
| 258 |
+
input_ids = tokenizer_image_object_token(inputs, self.tokenizer)
|
| 259 |
+
data_dict["input_ids"] = torch.tensor(input_ids).unsqueeze(0)
|
| 260 |
+
|
| 261 |
+
return data_dict
|
| 262 |
+
|
| 263 |
+
ChatRexProcessor.register_for_auto_class()
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"crop_size": {
|
| 3 |
+
"height": 768,
|
| 4 |
+
"width": 768
|
| 5 |
+
},
|
| 6 |
+
"do_center_crop": true,
|
| 7 |
+
"do_convert_rgb": true,
|
| 8 |
+
"do_normalize": true,
|
| 9 |
+
"do_rescale": true,
|
| 10 |
+
"do_resize": true,
|
| 11 |
+
"image_mean": [
|
| 12 |
+
0.48145466,
|
| 13 |
+
0.4578275,
|
| 14 |
+
0.40821073
|
| 15 |
+
],
|
| 16 |
+
"image_processor_type": "CLIPImageProcessor",
|
| 17 |
+
"image_std": [
|
| 18 |
+
0.26862954,
|
| 19 |
+
0.26130258,
|
| 20 |
+
0.27577711
|
| 21 |
+
],
|
| 22 |
+
"processor_class": "ChatRexProcessor",
|
| 23 |
+
"resample": 3,
|
| 24 |
+
"rescale_factor": 0.00392156862745098,
|
| 25 |
+
"size": {
|
| 26 |
+
"shortest_edge": 768
|
| 27 |
+
}
|
| 28 |
+
}
|
processor_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "preprocessing_chatrex.ChatRexProcessor"
|
| 4 |
+
},
|
| 5 |
+
"processor_class": "ChatRexProcessor"
|
| 6 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "<unk>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"unk_token": {
|
| 24 |
+
"content": "<unk>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
}
|
| 30 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
| 3 |
+
size 499723
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,876 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": true,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
},
|
| 30 |
+
"32000": {
|
| 31 |
+
"content": "<obj0>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
"32001": {
|
| 39 |
+
"content": "<obj1>",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": false,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": true
|
| 45 |
+
},
|
| 46 |
+
"32002": {
|
| 47 |
+
"content": "<obj2>",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": false,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": true
|
| 53 |
+
},
|
| 54 |
+
"32003": {
|
| 55 |
+
"content": "<obj3>",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": false,
|
| 58 |
+
"rstrip": false,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": true
|
| 61 |
+
},
|
| 62 |
+
"32004": {
|
| 63 |
+
"content": "<obj4>",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": false,
|
| 66 |
+
"rstrip": false,
|
| 67 |
+
"single_word": false,
|
| 68 |
+
"special": true
|
| 69 |
+
},
|
| 70 |
+
"32005": {
|
| 71 |
+
"content": "<obj5>",
|
| 72 |
+
"lstrip": false,
|
| 73 |
+
"normalized": false,
|
| 74 |
+
"rstrip": false,
|
| 75 |
+
"single_word": false,
|
| 76 |
+
"special": true
|
| 77 |
+
},
|
| 78 |
+
"32006": {
|
| 79 |
+
"content": "<obj6>",
|
| 80 |
+
"lstrip": false,
|
| 81 |
+
"normalized": false,
|
| 82 |
+
"rstrip": false,
|
| 83 |
+
"single_word": false,
|
| 84 |
+
"special": true
|
| 85 |
+
},
|
| 86 |
+
"32007": {
|
| 87 |
+
"content": "<obj7>",
|
| 88 |
+
"lstrip": false,
|
| 89 |
+
"normalized": false,
|
| 90 |
+
"rstrip": false,
|
| 91 |
+
"single_word": false,
|
| 92 |
+
"special": true
|
| 93 |
+
},
|
| 94 |
+
"32008": {
|
| 95 |
+
"content": "<obj8>",
|
| 96 |
+
"lstrip": false,
|
| 97 |
+
"normalized": false,
|
| 98 |
+
"rstrip": false,
|
| 99 |
+
"single_word": false,
|
| 100 |
+
"special": true
|
| 101 |
+
},
|
| 102 |
+
"32009": {
|
| 103 |
+
"content": "<obj9>",
|
| 104 |
+
"lstrip": false,
|
| 105 |
+
"normalized": false,
|
| 106 |
+
"rstrip": false,
|
| 107 |
+
"single_word": false,
|
| 108 |
+
"special": true
|
| 109 |
+
},
|
| 110 |
+
"32010": {
|
| 111 |
+
"content": "<obj10>",
|
| 112 |
+
"lstrip": false,
|
| 113 |
+
"normalized": false,
|
| 114 |
+
"rstrip": false,
|
| 115 |
+
"single_word": false,
|
| 116 |
+
"special": true
|
| 117 |
+
},
|
| 118 |
+
"32011": {
|
| 119 |
+
"content": "<obj11>",
|
| 120 |
+
"lstrip": false,
|
| 121 |
+
"normalized": false,
|
| 122 |
+
"rstrip": false,
|
| 123 |
+
"single_word": false,
|
| 124 |
+
"special": true
|
| 125 |
+
},
|
| 126 |
+
"32012": {
|
| 127 |
+
"content": "<obj12>",
|
| 128 |
+
"lstrip": false,
|
| 129 |
+
"normalized": false,
|
| 130 |
+
"rstrip": false,
|
| 131 |
+
"single_word": false,
|
| 132 |
+
"special": true
|
| 133 |
+
},
|
| 134 |
+
"32013": {
|
| 135 |
+
"content": "<obj13>",
|
| 136 |
+
"lstrip": false,
|
| 137 |
+
"normalized": false,
|
| 138 |
+
"rstrip": false,
|
| 139 |
+
"single_word": false,
|
| 140 |
+
"special": true
|
| 141 |
+
},
|
| 142 |
+
"32014": {
|
| 143 |
+
"content": "<obj14>",
|
| 144 |
+
"lstrip": false,
|
| 145 |
+
"normalized": false,
|
| 146 |
+
"rstrip": false,
|
| 147 |
+
"single_word": false,
|
| 148 |
+
"special": true
|
| 149 |
+
},
|
| 150 |
+
"32015": {
|
| 151 |
+
"content": "<obj15>",
|
| 152 |
+
"lstrip": false,
|
| 153 |
+
"normalized": false,
|
| 154 |
+
"rstrip": false,
|
| 155 |
+
"single_word": false,
|
| 156 |
+
"special": true
|
| 157 |
+
},
|
| 158 |
+
"32016": {
|
| 159 |
+
"content": "<obj16>",
|
| 160 |
+
"lstrip": false,
|
| 161 |
+
"normalized": false,
|
| 162 |
+
"rstrip": false,
|
| 163 |
+
"single_word": false,
|
| 164 |
+
"special": true
|
| 165 |
+
},
|
| 166 |
+
"32017": {
|
| 167 |
+
"content": "<obj17>",
|
| 168 |
+
"lstrip": false,
|
| 169 |
+
"normalized": false,
|
| 170 |
+
"rstrip": false,
|
| 171 |
+
"single_word": false,
|
| 172 |
+
"special": true
|
| 173 |
+
},
|
| 174 |
+
"32018": {
|
| 175 |
+
"content": "<obj18>",
|
| 176 |
+
"lstrip": false,
|
| 177 |
+
"normalized": false,
|
| 178 |
+
"rstrip": false,
|
| 179 |
+
"single_word": false,
|
| 180 |
+
"special": true
|
| 181 |
+
},
|
| 182 |
+
"32019": {
|
| 183 |
+
"content": "<obj19>",
|
| 184 |
+
"lstrip": false,
|
| 185 |
+
"normalized": false,
|
| 186 |
+
"rstrip": false,
|
| 187 |
+
"single_word": false,
|
| 188 |
+
"special": true
|
| 189 |
+
},
|
| 190 |
+
"32020": {
|
| 191 |
+
"content": "<obj20>",
|
| 192 |
+
"lstrip": false,
|
| 193 |
+
"normalized": false,
|
| 194 |
+
"rstrip": false,
|
| 195 |
+
"single_word": false,
|
| 196 |
+
"special": true
|
| 197 |
+
},
|
| 198 |
+
"32021": {
|
| 199 |
+
"content": "<obj21>",
|
| 200 |
+
"lstrip": false,
|
| 201 |
+
"normalized": false,
|
| 202 |
+
"rstrip": false,
|
| 203 |
+
"single_word": false,
|
| 204 |
+
"special": true
|
| 205 |
+
},
|
| 206 |
+
"32022": {
|
| 207 |
+
"content": "<obj22>",
|
| 208 |
+
"lstrip": false,
|
| 209 |
+
"normalized": false,
|
| 210 |
+
"rstrip": false,
|
| 211 |
+
"single_word": false,
|
| 212 |
+
"special": true
|
| 213 |
+
},
|
| 214 |
+
"32023": {
|
| 215 |
+
"content": "<obj23>",
|
| 216 |
+
"lstrip": false,
|
| 217 |
+
"normalized": false,
|
| 218 |
+
"rstrip": false,
|
| 219 |
+
"single_word": false,
|
| 220 |
+
"special": true
|
| 221 |
+
},
|
| 222 |
+
"32024": {
|
| 223 |
+
"content": "<obj24>",
|
| 224 |
+
"lstrip": false,
|
| 225 |
+
"normalized": false,
|
| 226 |
+
"rstrip": false,
|
| 227 |
+
"single_word": false,
|
| 228 |
+
"special": true
|
| 229 |
+
},
|
| 230 |
+
"32025": {
|
| 231 |
+
"content": "<obj25>",
|
| 232 |
+
"lstrip": false,
|
| 233 |
+
"normalized": false,
|
| 234 |
+
"rstrip": false,
|
| 235 |
+
"single_word": false,
|
| 236 |
+
"special": true
|
| 237 |
+
},
|
| 238 |
+
"32026": {
|
| 239 |
+
"content": "<obj26>",
|
| 240 |
+
"lstrip": false,
|
| 241 |
+
"normalized": false,
|
| 242 |
+
"rstrip": false,
|
| 243 |
+
"single_word": false,
|
| 244 |
+
"special": true
|
| 245 |
+
},
|
| 246 |
+
"32027": {
|
| 247 |
+
"content": "<obj27>",
|
| 248 |
+
"lstrip": false,
|
| 249 |
+
"normalized": false,
|
| 250 |
+
"rstrip": false,
|
| 251 |
+
"single_word": false,
|
| 252 |
+
"special": true
|
| 253 |
+
},
|
| 254 |
+
"32028": {
|
| 255 |
+
"content": "<obj28>",
|
| 256 |
+
"lstrip": false,
|
| 257 |
+
"normalized": false,
|
| 258 |
+
"rstrip": false,
|
| 259 |
+
"single_word": false,
|
| 260 |
+
"special": true
|
| 261 |
+
},
|
| 262 |
+
"32029": {
|
| 263 |
+
"content": "<obj29>",
|
| 264 |
+
"lstrip": false,
|
| 265 |
+
"normalized": false,
|
| 266 |
+
"rstrip": false,
|
| 267 |
+
"single_word": false,
|
| 268 |
+
"special": true
|
| 269 |
+
},
|
| 270 |
+
"32030": {
|
| 271 |
+
"content": "<obj30>",
|
| 272 |
+
"lstrip": false,
|
| 273 |
+
"normalized": false,
|
| 274 |
+
"rstrip": false,
|
| 275 |
+
"single_word": false,
|
| 276 |
+
"special": true
|
| 277 |
+
},
|
| 278 |
+
"32031": {
|
| 279 |
+
"content": "<obj31>",
|
| 280 |
+
"lstrip": false,
|
| 281 |
+
"normalized": false,
|
| 282 |
+
"rstrip": false,
|
| 283 |
+
"single_word": false,
|
| 284 |
+
"special": true
|
| 285 |
+
},
|
| 286 |
+
"32032": {
|
| 287 |
+
"content": "<obj32>",
|
| 288 |
+
"lstrip": false,
|
| 289 |
+
"normalized": false,
|
| 290 |
+
"rstrip": false,
|
| 291 |
+
"single_word": false,
|
| 292 |
+
"special": true
|
| 293 |
+
},
|
| 294 |
+
"32033": {
|
| 295 |
+
"content": "<obj33>",
|
| 296 |
+
"lstrip": false,
|
| 297 |
+
"normalized": false,
|
| 298 |
+
"rstrip": false,
|
| 299 |
+
"single_word": false,
|
| 300 |
+
"special": true
|
| 301 |
+
},
|
| 302 |
+
"32034": {
|
| 303 |
+
"content": "<obj34>",
|
| 304 |
+
"lstrip": false,
|
| 305 |
+
"normalized": false,
|
| 306 |
+
"rstrip": false,
|
| 307 |
+
"single_word": false,
|
| 308 |
+
"special": true
|
| 309 |
+
},
|
| 310 |
+
"32035": {
|
| 311 |
+
"content": "<obj35>",
|
| 312 |
+
"lstrip": false,
|
| 313 |
+
"normalized": false,
|
| 314 |
+
"rstrip": false,
|
| 315 |
+
"single_word": false,
|
| 316 |
+
"special": true
|
| 317 |
+
},
|
| 318 |
+
"32036": {
|
| 319 |
+
"content": "<obj36>",
|
| 320 |
+
"lstrip": false,
|
| 321 |
+
"normalized": false,
|
| 322 |
+
"rstrip": false,
|
| 323 |
+
"single_word": false,
|
| 324 |
+
"special": true
|
| 325 |
+
},
|
| 326 |
+
"32037": {
|
| 327 |
+
"content": "<obj37>",
|
| 328 |
+
"lstrip": false,
|
| 329 |
+
"normalized": false,
|
| 330 |
+
"rstrip": false,
|
| 331 |
+
"single_word": false,
|
| 332 |
+
"special": true
|
| 333 |
+
},
|
| 334 |
+
"32038": {
|
| 335 |
+
"content": "<obj38>",
|
| 336 |
+
"lstrip": false,
|
| 337 |
+
"normalized": false,
|
| 338 |
+
"rstrip": false,
|
| 339 |
+
"single_word": false,
|
| 340 |
+
"special": true
|
| 341 |
+
},
|
| 342 |
+
"32039": {
|
| 343 |
+
"content": "<obj39>",
|
| 344 |
+
"lstrip": false,
|
| 345 |
+
"normalized": false,
|
| 346 |
+
"rstrip": false,
|
| 347 |
+
"single_word": false,
|
| 348 |
+
"special": true
|
| 349 |
+
},
|
| 350 |
+
"32040": {
|
| 351 |
+
"content": "<obj40>",
|
| 352 |
+
"lstrip": false,
|
| 353 |
+
"normalized": false,
|
| 354 |
+
"rstrip": false,
|
| 355 |
+
"single_word": false,
|
| 356 |
+
"special": true
|
| 357 |
+
},
|
| 358 |
+
"32041": {
|
| 359 |
+
"content": "<obj41>",
|
| 360 |
+
"lstrip": false,
|
| 361 |
+
"normalized": false,
|
| 362 |
+
"rstrip": false,
|
| 363 |
+
"single_word": false,
|
| 364 |
+
"special": true
|
| 365 |
+
},
|
| 366 |
+
"32042": {
|
| 367 |
+
"content": "<obj42>",
|
| 368 |
+
"lstrip": false,
|
| 369 |
+
"normalized": false,
|
| 370 |
+
"rstrip": false,
|
| 371 |
+
"single_word": false,
|
| 372 |
+
"special": true
|
| 373 |
+
},
|
| 374 |
+
"32043": {
|
| 375 |
+
"content": "<obj43>",
|
| 376 |
+
"lstrip": false,
|
| 377 |
+
"normalized": false,
|
| 378 |
+
"rstrip": false,
|
| 379 |
+
"single_word": false,
|
| 380 |
+
"special": true
|
| 381 |
+
},
|
| 382 |
+
"32044": {
|
| 383 |
+
"content": "<obj44>",
|
| 384 |
+
"lstrip": false,
|
| 385 |
+
"normalized": false,
|
| 386 |
+
"rstrip": false,
|
| 387 |
+
"single_word": false,
|
| 388 |
+
"special": true
|
| 389 |
+
},
|
| 390 |
+
"32045": {
|
| 391 |
+
"content": "<obj45>",
|
| 392 |
+
"lstrip": false,
|
| 393 |
+
"normalized": false,
|
| 394 |
+
"rstrip": false,
|
| 395 |
+
"single_word": false,
|
| 396 |
+
"special": true
|
| 397 |
+
},
|
| 398 |
+
"32046": {
|
| 399 |
+
"content": "<obj46>",
|
| 400 |
+
"lstrip": false,
|
| 401 |
+
"normalized": false,
|
| 402 |
+
"rstrip": false,
|
| 403 |
+
"single_word": false,
|
| 404 |
+
"special": true
|
| 405 |
+
},
|
| 406 |
+
"32047": {
|
| 407 |
+
"content": "<obj47>",
|
| 408 |
+
"lstrip": false,
|
| 409 |
+
"normalized": false,
|
| 410 |
+
"rstrip": false,
|
| 411 |
+
"single_word": false,
|
| 412 |
+
"special": true
|
| 413 |
+
},
|
| 414 |
+
"32048": {
|
| 415 |
+
"content": "<obj48>",
|
| 416 |
+
"lstrip": false,
|
| 417 |
+
"normalized": false,
|
| 418 |
+
"rstrip": false,
|
| 419 |
+
"single_word": false,
|
| 420 |
+
"special": true
|
| 421 |
+
},
|
| 422 |
+
"32049": {
|
| 423 |
+
"content": "<obj49>",
|
| 424 |
+
"lstrip": false,
|
| 425 |
+
"normalized": false,
|
| 426 |
+
"rstrip": false,
|
| 427 |
+
"single_word": false,
|
| 428 |
+
"special": true
|
| 429 |
+
},
|
| 430 |
+
"32050": {
|
| 431 |
+
"content": "<obj50>",
|
| 432 |
+
"lstrip": false,
|
| 433 |
+
"normalized": false,
|
| 434 |
+
"rstrip": false,
|
| 435 |
+
"single_word": false,
|
| 436 |
+
"special": true
|
| 437 |
+
},
|
| 438 |
+
"32051": {
|
| 439 |
+
"content": "<obj51>",
|
| 440 |
+
"lstrip": false,
|
| 441 |
+
"normalized": false,
|
| 442 |
+
"rstrip": false,
|
| 443 |
+
"single_word": false,
|
| 444 |
+
"special": true
|
| 445 |
+
},
|
| 446 |
+
"32052": {
|
| 447 |
+
"content": "<obj52>",
|
| 448 |
+
"lstrip": false,
|
| 449 |
+
"normalized": false,
|
| 450 |
+
"rstrip": false,
|
| 451 |
+
"single_word": false,
|
| 452 |
+
"special": true
|
| 453 |
+
},
|
| 454 |
+
"32053": {
|
| 455 |
+
"content": "<obj53>",
|
| 456 |
+
"lstrip": false,
|
| 457 |
+
"normalized": false,
|
| 458 |
+
"rstrip": false,
|
| 459 |
+
"single_word": false,
|
| 460 |
+
"special": true
|
| 461 |
+
},
|
| 462 |
+
"32054": {
|
| 463 |
+
"content": "<obj54>",
|
| 464 |
+
"lstrip": false,
|
| 465 |
+
"normalized": false,
|
| 466 |
+
"rstrip": false,
|
| 467 |
+
"single_word": false,
|
| 468 |
+
"special": true
|
| 469 |
+
},
|
| 470 |
+
"32055": {
|
| 471 |
+
"content": "<obj55>",
|
| 472 |
+
"lstrip": false,
|
| 473 |
+
"normalized": false,
|
| 474 |
+
"rstrip": false,
|
| 475 |
+
"single_word": false,
|
| 476 |
+
"special": true
|
| 477 |
+
},
|
| 478 |
+
"32056": {
|
| 479 |
+
"content": "<obj56>",
|
| 480 |
+
"lstrip": false,
|
| 481 |
+
"normalized": false,
|
| 482 |
+
"rstrip": false,
|
| 483 |
+
"single_word": false,
|
| 484 |
+
"special": true
|
| 485 |
+
},
|
| 486 |
+
"32057": {
|
| 487 |
+
"content": "<obj57>",
|
| 488 |
+
"lstrip": false,
|
| 489 |
+
"normalized": false,
|
| 490 |
+
"rstrip": false,
|
| 491 |
+
"single_word": false,
|
| 492 |
+
"special": true
|
| 493 |
+
},
|
| 494 |
+
"32058": {
|
| 495 |
+
"content": "<obj58>",
|
| 496 |
+
"lstrip": false,
|
| 497 |
+
"normalized": false,
|
| 498 |
+
"rstrip": false,
|
| 499 |
+
"single_word": false,
|
| 500 |
+
"special": true
|
| 501 |
+
},
|
| 502 |
+
"32059": {
|
| 503 |
+
"content": "<obj59>",
|
| 504 |
+
"lstrip": false,
|
| 505 |
+
"normalized": false,
|
| 506 |
+
"rstrip": false,
|
| 507 |
+
"single_word": false,
|
| 508 |
+
"special": true
|
| 509 |
+
},
|
| 510 |
+
"32060": {
|
| 511 |
+
"content": "<obj60>",
|
| 512 |
+
"lstrip": false,
|
| 513 |
+
"normalized": false,
|
| 514 |
+
"rstrip": false,
|
| 515 |
+
"single_word": false,
|
| 516 |
+
"special": true
|
| 517 |
+
},
|
| 518 |
+
"32061": {
|
| 519 |
+
"content": "<obj61>",
|
| 520 |
+
"lstrip": false,
|
| 521 |
+
"normalized": false,
|
| 522 |
+
"rstrip": false,
|
| 523 |
+
"single_word": false,
|
| 524 |
+
"special": true
|
| 525 |
+
},
|
| 526 |
+
"32062": {
|
| 527 |
+
"content": "<obj62>",
|
| 528 |
+
"lstrip": false,
|
| 529 |
+
"normalized": false,
|
| 530 |
+
"rstrip": false,
|
| 531 |
+
"single_word": false,
|
| 532 |
+
"special": true
|
| 533 |
+
},
|
| 534 |
+
"32063": {
|
| 535 |
+
"content": "<obj63>",
|
| 536 |
+
"lstrip": false,
|
| 537 |
+
"normalized": false,
|
| 538 |
+
"rstrip": false,
|
| 539 |
+
"single_word": false,
|
| 540 |
+
"special": true
|
| 541 |
+
},
|
| 542 |
+
"32064": {
|
| 543 |
+
"content": "<obj64>",
|
| 544 |
+
"lstrip": false,
|
| 545 |
+
"normalized": false,
|
| 546 |
+
"rstrip": false,
|
| 547 |
+
"single_word": false,
|
| 548 |
+
"special": true
|
| 549 |
+
},
|
| 550 |
+
"32065": {
|
| 551 |
+
"content": "<obj65>",
|
| 552 |
+
"lstrip": false,
|
| 553 |
+
"normalized": false,
|
| 554 |
+
"rstrip": false,
|
| 555 |
+
"single_word": false,
|
| 556 |
+
"special": true
|
| 557 |
+
},
|
| 558 |
+
"32066": {
|
| 559 |
+
"content": "<obj66>",
|
| 560 |
+
"lstrip": false,
|
| 561 |
+
"normalized": false,
|
| 562 |
+
"rstrip": false,
|
| 563 |
+
"single_word": false,
|
| 564 |
+
"special": true
|
| 565 |
+
},
|
| 566 |
+
"32067": {
|
| 567 |
+
"content": "<obj67>",
|
| 568 |
+
"lstrip": false,
|
| 569 |
+
"normalized": false,
|
| 570 |
+
"rstrip": false,
|
| 571 |
+
"single_word": false,
|
| 572 |
+
"special": true
|
| 573 |
+
},
|
| 574 |
+
"32068": {
|
| 575 |
+
"content": "<obj68>",
|
| 576 |
+
"lstrip": false,
|
| 577 |
+
"normalized": false,
|
| 578 |
+
"rstrip": false,
|
| 579 |
+
"single_word": false,
|
| 580 |
+
"special": true
|
| 581 |
+
},
|
| 582 |
+
"32069": {
|
| 583 |
+
"content": "<obj69>",
|
| 584 |
+
"lstrip": false,
|
| 585 |
+
"normalized": false,
|
| 586 |
+
"rstrip": false,
|
| 587 |
+
"single_word": false,
|
| 588 |
+
"special": true
|
| 589 |
+
},
|
| 590 |
+
"32070": {
|
| 591 |
+
"content": "<obj70>",
|
| 592 |
+
"lstrip": false,
|
| 593 |
+
"normalized": false,
|
| 594 |
+
"rstrip": false,
|
| 595 |
+
"single_word": false,
|
| 596 |
+
"special": true
|
| 597 |
+
},
|
| 598 |
+
"32071": {
|
| 599 |
+
"content": "<obj71>",
|
| 600 |
+
"lstrip": false,
|
| 601 |
+
"normalized": false,
|
| 602 |
+
"rstrip": false,
|
| 603 |
+
"single_word": false,
|
| 604 |
+
"special": true
|
| 605 |
+
},
|
| 606 |
+
"32072": {
|
| 607 |
+
"content": "<obj72>",
|
| 608 |
+
"lstrip": false,
|
| 609 |
+
"normalized": false,
|
| 610 |
+
"rstrip": false,
|
| 611 |
+
"single_word": false,
|
| 612 |
+
"special": true
|
| 613 |
+
},
|
| 614 |
+
"32073": {
|
| 615 |
+
"content": "<obj73>",
|
| 616 |
+
"lstrip": false,
|
| 617 |
+
"normalized": false,
|
| 618 |
+
"rstrip": false,
|
| 619 |
+
"single_word": false,
|
| 620 |
+
"special": true
|
| 621 |
+
},
|
| 622 |
+
"32074": {
|
| 623 |
+
"content": "<obj74>",
|
| 624 |
+
"lstrip": false,
|
| 625 |
+
"normalized": false,
|
| 626 |
+
"rstrip": false,
|
| 627 |
+
"single_word": false,
|
| 628 |
+
"special": true
|
| 629 |
+
},
|
| 630 |
+
"32075": {
|
| 631 |
+
"content": "<obj75>",
|
| 632 |
+
"lstrip": false,
|
| 633 |
+
"normalized": false,
|
| 634 |
+
"rstrip": false,
|
| 635 |
+
"single_word": false,
|
| 636 |
+
"special": true
|
| 637 |
+
},
|
| 638 |
+
"32076": {
|
| 639 |
+
"content": "<obj76>",
|
| 640 |
+
"lstrip": false,
|
| 641 |
+
"normalized": false,
|
| 642 |
+
"rstrip": false,
|
| 643 |
+
"single_word": false,
|
| 644 |
+
"special": true
|
| 645 |
+
},
|
| 646 |
+
"32077": {
|
| 647 |
+
"content": "<obj77>",
|
| 648 |
+
"lstrip": false,
|
| 649 |
+
"normalized": false,
|
| 650 |
+
"rstrip": false,
|
| 651 |
+
"single_word": false,
|
| 652 |
+
"special": true
|
| 653 |
+
},
|
| 654 |
+
"32078": {
|
| 655 |
+
"content": "<obj78>",
|
| 656 |
+
"lstrip": false,
|
| 657 |
+
"normalized": false,
|
| 658 |
+
"rstrip": false,
|
| 659 |
+
"single_word": false,
|
| 660 |
+
"special": true
|
| 661 |
+
},
|
| 662 |
+
"32079": {
|
| 663 |
+
"content": "<obj79>",
|
| 664 |
+
"lstrip": false,
|
| 665 |
+
"normalized": false,
|
| 666 |
+
"rstrip": false,
|
| 667 |
+
"single_word": false,
|
| 668 |
+
"special": true
|
| 669 |
+
},
|
| 670 |
+
"32080": {
|
| 671 |
+
"content": "<obj80>",
|
| 672 |
+
"lstrip": false,
|
| 673 |
+
"normalized": false,
|
| 674 |
+
"rstrip": false,
|
| 675 |
+
"single_word": false,
|
| 676 |
+
"special": true
|
| 677 |
+
},
|
| 678 |
+
"32081": {
|
| 679 |
+
"content": "<obj81>",
|
| 680 |
+
"lstrip": false,
|
| 681 |
+
"normalized": false,
|
| 682 |
+
"rstrip": false,
|
| 683 |
+
"single_word": false,
|
| 684 |
+
"special": true
|
| 685 |
+
},
|
| 686 |
+
"32082": {
|
| 687 |
+
"content": "<obj82>",
|
| 688 |
+
"lstrip": false,
|
| 689 |
+
"normalized": false,
|
| 690 |
+
"rstrip": false,
|
| 691 |
+
"single_word": false,
|
| 692 |
+
"special": true
|
| 693 |
+
},
|
| 694 |
+
"32083": {
|
| 695 |
+
"content": "<obj83>",
|
| 696 |
+
"lstrip": false,
|
| 697 |
+
"normalized": false,
|
| 698 |
+
"rstrip": false,
|
| 699 |
+
"single_word": false,
|
| 700 |
+
"special": true
|
| 701 |
+
},
|
| 702 |
+
"32084": {
|
| 703 |
+
"content": "<obj84>",
|
| 704 |
+
"lstrip": false,
|
| 705 |
+
"normalized": false,
|
| 706 |
+
"rstrip": false,
|
| 707 |
+
"single_word": false,
|
| 708 |
+
"special": true
|
| 709 |
+
},
|
| 710 |
+
"32085": {
|
| 711 |
+
"content": "<obj85>",
|
| 712 |
+
"lstrip": false,
|
| 713 |
+
"normalized": false,
|
| 714 |
+
"rstrip": false,
|
| 715 |
+
"single_word": false,
|
| 716 |
+
"special": true
|
| 717 |
+
},
|
| 718 |
+
"32086": {
|
| 719 |
+
"content": "<obj86>",
|
| 720 |
+
"lstrip": false,
|
| 721 |
+
"normalized": false,
|
| 722 |
+
"rstrip": false,
|
| 723 |
+
"single_word": false,
|
| 724 |
+
"special": true
|
| 725 |
+
},
|
| 726 |
+
"32087": {
|
| 727 |
+
"content": "<obj87>",
|
| 728 |
+
"lstrip": false,
|
| 729 |
+
"normalized": false,
|
| 730 |
+
"rstrip": false,
|
| 731 |
+
"single_word": false,
|
| 732 |
+
"special": true
|
| 733 |
+
},
|
| 734 |
+
"32088": {
|
| 735 |
+
"content": "<obj88>",
|
| 736 |
+
"lstrip": false,
|
| 737 |
+
"normalized": false,
|
| 738 |
+
"rstrip": false,
|
| 739 |
+
"single_word": false,
|
| 740 |
+
"special": true
|
| 741 |
+
},
|
| 742 |
+
"32089": {
|
| 743 |
+
"content": "<obj89>",
|
| 744 |
+
"lstrip": false,
|
| 745 |
+
"normalized": false,
|
| 746 |
+
"rstrip": false,
|
| 747 |
+
"single_word": false,
|
| 748 |
+
"special": true
|
| 749 |
+
},
|
| 750 |
+
"32090": {
|
| 751 |
+
"content": "<obj90>",
|
| 752 |
+
"lstrip": false,
|
| 753 |
+
"normalized": false,
|
| 754 |
+
"rstrip": false,
|
| 755 |
+
"single_word": false,
|
| 756 |
+
"special": true
|
| 757 |
+
},
|
| 758 |
+
"32091": {
|
| 759 |
+
"content": "<obj91>",
|
| 760 |
+
"lstrip": false,
|
| 761 |
+
"normalized": false,
|
| 762 |
+
"rstrip": false,
|
| 763 |
+
"single_word": false,
|
| 764 |
+
"special": true
|
| 765 |
+
},
|
| 766 |
+
"32092": {
|
| 767 |
+
"content": "<obj92>",
|
| 768 |
+
"lstrip": false,
|
| 769 |
+
"normalized": false,
|
| 770 |
+
"rstrip": false,
|
| 771 |
+
"single_word": false,
|
| 772 |
+
"special": true
|
| 773 |
+
},
|
| 774 |
+
"32093": {
|
| 775 |
+
"content": "<obj93>",
|
| 776 |
+
"lstrip": false,
|
| 777 |
+
"normalized": false,
|
| 778 |
+
"rstrip": false,
|
| 779 |
+
"single_word": false,
|
| 780 |
+
"special": true
|
| 781 |
+
},
|
| 782 |
+
"32094": {
|
| 783 |
+
"content": "<obj94>",
|
| 784 |
+
"lstrip": false,
|
| 785 |
+
"normalized": false,
|
| 786 |
+
"rstrip": false,
|
| 787 |
+
"single_word": false,
|
| 788 |
+
"special": true
|
| 789 |
+
},
|
| 790 |
+
"32095": {
|
| 791 |
+
"content": "<obj95>",
|
| 792 |
+
"lstrip": false,
|
| 793 |
+
"normalized": false,
|
| 794 |
+
"rstrip": false,
|
| 795 |
+
"single_word": false,
|
| 796 |
+
"special": true
|
| 797 |
+
},
|
| 798 |
+
"32096": {
|
| 799 |
+
"content": "<obj96>",
|
| 800 |
+
"lstrip": false,
|
| 801 |
+
"normalized": false,
|
| 802 |
+
"rstrip": false,
|
| 803 |
+
"single_word": false,
|
| 804 |
+
"special": true
|
| 805 |
+
},
|
| 806 |
+
"32097": {
|
| 807 |
+
"content": "<obj97>",
|
| 808 |
+
"lstrip": false,
|
| 809 |
+
"normalized": false,
|
| 810 |
+
"rstrip": false,
|
| 811 |
+
"single_word": false,
|
| 812 |
+
"special": true
|
| 813 |
+
},
|
| 814 |
+
"32098": {
|
| 815 |
+
"content": "<obj98>",
|
| 816 |
+
"lstrip": false,
|
| 817 |
+
"normalized": false,
|
| 818 |
+
"rstrip": false,
|
| 819 |
+
"single_word": false,
|
| 820 |
+
"special": true
|
| 821 |
+
},
|
| 822 |
+
"32099": {
|
| 823 |
+
"content": "<obj99>",
|
| 824 |
+
"lstrip": false,
|
| 825 |
+
"normalized": false,
|
| 826 |
+
"rstrip": false,
|
| 827 |
+
"single_word": false,
|
| 828 |
+
"special": true
|
| 829 |
+
},
|
| 830 |
+
"32100": {
|
| 831 |
+
"content": "<ground>",
|
| 832 |
+
"lstrip": false,
|
| 833 |
+
"normalized": false,
|
| 834 |
+
"rstrip": false,
|
| 835 |
+
"single_word": false,
|
| 836 |
+
"special": true
|
| 837 |
+
},
|
| 838 |
+
"32101": {
|
| 839 |
+
"content": "</ground>",
|
| 840 |
+
"lstrip": false,
|
| 841 |
+
"normalized": false,
|
| 842 |
+
"rstrip": false,
|
| 843 |
+
"single_word": false,
|
| 844 |
+
"special": true
|
| 845 |
+
},
|
| 846 |
+
"32102": {
|
| 847 |
+
"content": "<objects>",
|
| 848 |
+
"lstrip": false,
|
| 849 |
+
"normalized": false,
|
| 850 |
+
"rstrip": false,
|
| 851 |
+
"single_word": false,
|
| 852 |
+
"special": true
|
| 853 |
+
},
|
| 854 |
+
"32103": {
|
| 855 |
+
"content": "</objects>",
|
| 856 |
+
"lstrip": false,
|
| 857 |
+
"normalized": false,
|
| 858 |
+
"rstrip": false,
|
| 859 |
+
"single_word": false,
|
| 860 |
+
"special": true
|
| 861 |
+
}
|
| 862 |
+
},
|
| 863 |
+
"bos_token": "<s>",
|
| 864 |
+
"clean_up_tokenization_spaces": false,
|
| 865 |
+
"eos_token": "</s>",
|
| 866 |
+
"legacy": false,
|
| 867 |
+
"model_max_length": 4096,
|
| 868 |
+
"pad_token": "<unk>",
|
| 869 |
+
"padding_side": "right",
|
| 870 |
+
"processor_class": "LlavaProcessor",
|
| 871 |
+
"sp_model_kwargs": {},
|
| 872 |
+
"spaces_between_special_tokens": false,
|
| 873 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 874 |
+
"unk_token": "<unk>",
|
| 875 |
+
"use_default_system_prompt": false
|
| 876 |
+
}
|