Upload Myria3D V3.3 inference configuration
Browse files
FRACTAL-LidarHD_7cl_randlanet-inference-Myria3DV3.3.yaml
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
seed: 12345
|
| 2 |
+
work_dir: ${hydra:runtime.cwd}
|
| 3 |
+
debug: false
|
| 4 |
+
print_config: true
|
| 5 |
+
ignore_warnings: true
|
| 6 |
+
datamodule:
|
| 7 |
+
transforms:
|
| 8 |
+
preparations:
|
| 9 |
+
eval:
|
| 10 |
+
TargetTransform:
|
| 11 |
+
_target_: myria3d.pctl.transforms.transforms.TargetTransform
|
| 12 |
+
_args_:
|
| 13 |
+
- ${dataset_description.classification_preprocessing_dict}
|
| 14 |
+
- ${dataset_description.classification_dict}
|
| 15 |
+
DropPointsByClass:
|
| 16 |
+
_target_: myria3d.pctl.transforms.transforms.DropPointsByClass
|
| 17 |
+
CopyFullPos:
|
| 18 |
+
_target_: myria3d.pctl.transforms.transforms.CopyFullPos
|
| 19 |
+
CopyFullPreparedTargets:
|
| 20 |
+
_target_: myria3d.pctl.transforms.transforms.CopyFullPreparedTargets
|
| 21 |
+
GridSampling:
|
| 22 |
+
_target_: torch_geometric.transforms.GridSampling
|
| 23 |
+
_args_:
|
| 24 |
+
- 0.25
|
| 25 |
+
MinimumNumNodes:
|
| 26 |
+
_target_: myria3d.pctl.transforms.transforms.MinimumNumNodes
|
| 27 |
+
_args_:
|
| 28 |
+
- 300
|
| 29 |
+
MaximumNumNodes:
|
| 30 |
+
_target_: myria3d.pctl.transforms.transforms.MaximumNumNodes
|
| 31 |
+
_args_:
|
| 32 |
+
- 40000
|
| 33 |
+
CopySampledPos:
|
| 34 |
+
_target_: myria3d.pctl.transforms.transforms.CopySampledPos
|
| 35 |
+
Center:
|
| 36 |
+
_target_: torch_geometric.transforms.Center
|
| 37 |
+
predict:
|
| 38 |
+
DropPointsByClass:
|
| 39 |
+
_target_: myria3d.pctl.transforms.transforms.DropPointsByClass
|
| 40 |
+
CopyFullPos:
|
| 41 |
+
_target_: myria3d.pctl.transforms.transforms.CopyFullPos
|
| 42 |
+
GridSampling:
|
| 43 |
+
_target_: torch_geometric.transforms.GridSampling
|
| 44 |
+
_args_:
|
| 45 |
+
- 0.25
|
| 46 |
+
MinimumNumNodes:
|
| 47 |
+
_target_: myria3d.pctl.transforms.transforms.MinimumNumNodes
|
| 48 |
+
_args_:
|
| 49 |
+
- 300
|
| 50 |
+
MaximumNumNodes:
|
| 51 |
+
_target_: myria3d.pctl.transforms.transforms.MaximumNumNodes
|
| 52 |
+
_args_:
|
| 53 |
+
- 40000
|
| 54 |
+
CopySampledPos:
|
| 55 |
+
_target_: myria3d.pctl.transforms.transforms.CopySampledPos
|
| 56 |
+
Center:
|
| 57 |
+
_target_: torch_geometric.transforms.Center
|
| 58 |
+
normalizations:
|
| 59 |
+
NullifyLowestZ:
|
| 60 |
+
_target_: myria3d.pctl.transforms.transforms.NullifyLowestZ
|
| 61 |
+
NormalizePos:
|
| 62 |
+
_target_: myria3d.pctl.transforms.transforms.NormalizePos
|
| 63 |
+
subtile_width: ${datamodule.subtile_width}
|
| 64 |
+
StandardizeRGBAndIntensity:
|
| 65 |
+
_target_: myria3d.pctl.transforms.transforms.StandardizeRGBAndIntensity
|
| 66 |
+
preparations_eval_list: '${oc.dict.values: datamodule.transforms.preparations.eval}'
|
| 67 |
+
preparations_predict_list: '${oc.dict.values: datamodule.transforms.preparations.predict}'
|
| 68 |
+
normalizations_list: '${oc.dict.values: datamodule.transforms.normalizations}'
|
| 69 |
+
_target_: myria3d.pctl.datamodule.hdf5.HDF5LidarDataModule
|
| 70 |
+
epsg: 2154
|
| 71 |
+
data_dir: null
|
| 72 |
+
split_csv_path: null
|
| 73 |
+
hdf5_file_path: null
|
| 74 |
+
points_pre_transform:
|
| 75 |
+
_target_: functools.partial
|
| 76 |
+
_args_:
|
| 77 |
+
- ${get_method:myria3d.pctl.points_pre_transform.lidar_hd.lidar_hd_pre_transform}
|
| 78 |
+
pre_filter:
|
| 79 |
+
_target_: functools.partial
|
| 80 |
+
_args_:
|
| 81 |
+
- ${get_method:myria3d.pctl.dataset.utils.pre_filter_below_n_points}
|
| 82 |
+
min_num_nodes: 1
|
| 83 |
+
tile_width: 1000
|
| 84 |
+
subtile_width: 50
|
| 85 |
+
subtile_overlap_predict: ${predict.subtile_overlap}
|
| 86 |
+
batch_size: 10
|
| 87 |
+
num_workers: 3
|
| 88 |
+
prefetch_factor: 3
|
| 89 |
+
dataset_description:
|
| 90 |
+
_convert_: all
|
| 91 |
+
classification_preprocessing_dict:
|
| 92 |
+
3: 5
|
| 93 |
+
4: 5
|
| 94 |
+
66: 65
|
| 95 |
+
classification_dict:
|
| 96 |
+
1: unclassified
|
| 97 |
+
2: ground
|
| 98 |
+
5: vegetation
|
| 99 |
+
6: building
|
| 100 |
+
9: water
|
| 101 |
+
17: bridge
|
| 102 |
+
64: lasting_above
|
| 103 |
+
d_in: 9
|
| 104 |
+
num_classes: 7
|
| 105 |
+
callbacks:
|
| 106 |
+
log_code:
|
| 107 |
+
_target_: myria3d.callbacks.comet_callbacks.LogCode
|
| 108 |
+
code_dir: ${work_dir}/myria3d
|
| 109 |
+
log_logs_dir:
|
| 110 |
+
_target_: myria3d.callbacks.comet_callbacks.LogLogsPath
|
| 111 |
+
lr_monitor:
|
| 112 |
+
_target_: pytorch_lightning.callbacks.LearningRateMonitor
|
| 113 |
+
logging_interval: step
|
| 114 |
+
log_momentum: true
|
| 115 |
+
model_checkpoint:
|
| 116 |
+
_target_: pytorch_lightning.callbacks.ModelCheckpoint
|
| 117 |
+
monitor: val/loss_epoch
|
| 118 |
+
mode: min
|
| 119 |
+
save_top_k: 1
|
| 120 |
+
save_last: true
|
| 121 |
+
verbose: true
|
| 122 |
+
dirpath: checkpoints/
|
| 123 |
+
filename: epoch_{epoch:03d}
|
| 124 |
+
auto_insert_metric_name: false
|
| 125 |
+
early_stopping:
|
| 126 |
+
_target_: pytorch_lightning.callbacks.EarlyStopping
|
| 127 |
+
monitor: val/loss_epoch
|
| 128 |
+
mode: min
|
| 129 |
+
patience: 6
|
| 130 |
+
min_delta: 0
|
| 131 |
+
model:
|
| 132 |
+
_target_: myria3d.models.model.Model
|
| 133 |
+
d_in: ${dataset_description.d_in}
|
| 134 |
+
num_classes: ${dataset_description.num_classes}
|
| 135 |
+
classification_dict: ${dataset_description.classification_dict}
|
| 136 |
+
ckpt_path: FRACTAL-LidarHD_7cl_randlanet.ckpt
|
| 137 |
+
neural_net_class_name: PyGRandLANet
|
| 138 |
+
neural_net_hparams:
|
| 139 |
+
num_features: ${model.d_in}
|
| 140 |
+
num_classes: ${model.num_classes}
|
| 141 |
+
num_neighbors: 16
|
| 142 |
+
decimation: 4
|
| 143 |
+
return_logits: true
|
| 144 |
+
interpolation_k: ${predict.interpolator.interpolation_k}
|
| 145 |
+
num_workers: 4
|
| 146 |
+
logger:
|
| 147 |
+
comet:
|
| 148 |
+
_target_: pytorch_lightning.loggers.comet.CometLogger
|
| 149 |
+
api_key: ${oc.env:COMET_API_TOKEN}
|
| 150 |
+
workspace: ${oc.env:COMET_WORKSPACE}
|
| 151 |
+
project_name: ${oc.env:COMET_PROJECT_NAME}
|
| 152 |
+
experiment_name: DATAPAPER-LidarHD-20240416_100k_fractal-6GPUs
|
| 153 |
+
auto_log_co2: false
|
| 154 |
+
disabled: false
|
| 155 |
+
task:
|
| 156 |
+
task_name: predict
|
| 157 |
+
predict:
|
| 158 |
+
src_las: /path/to/input.las
|
| 159 |
+
output_dir: /path/to/output_dir/
|
| 160 |
+
ckpt_path: FRACTAL-LidarHD_7cl_randlanet.ckpt
|
| 161 |
+
gpus: 0
|
| 162 |
+
subtile_overlap: 0
|
| 163 |
+
interpolator:
|
| 164 |
+
_target_: myria3d.models.interpolation.Interpolator
|
| 165 |
+
interpolation_k: 10
|
| 166 |
+
classification_dict: ${dataset_description.classification_dict}
|
| 167 |
+
probas_to_save: [building,ground]
|
| 168 |
+
predicted_classification_channel: PredictedClassification
|
| 169 |
+
entropy_channel: entropy
|