danf commited on
Commit
f35ce4b
·
verified ·
1 Parent(s): 7a7885d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -18,13 +18,13 @@ library_name: transformers
18
  pipeline_tag: text-generation
19
  ---
20
 
21
- # DeepMath-v1: A Lightweight Math Reasoning Agent
22
 
23
  <img src="https://cdn-uploads.huggingface.co/production/uploads/62d93cd728f9c86a4031562e/ndb_WmPavW1MONAjsGpYT.jpeg" style="width:600px" alt="An LLM is using a calculator to answer questions." />
24
 
25
  ## Model Description
26
 
27
- **DeepMath-v1** is a 4B parameter mathematical reasoning model that combines a fine-tuned LLM with a sandboxed Python executor. Built on [Qwen3-4B Thinking](https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507) and trained with **GRPO (Group Relative Policy Optimization)**, DeepMath generates concise Python snippets for computational steps instead of verbose text explanations, significantly reducing errors and output length.
28
 
29
  - **Developed by:** Intel AI Labs
30
  - **Model type:** Causal language model with agent capabilities
@@ -43,7 +43,7 @@ pipeline_tag: text-generation
43
 
44
  ## Model Architecture
45
 
46
- DeepMath-v1 uses a LoRA adapter fine-tuned on top of Qwen3-4B Thinking with the following components:
47
 
48
  - **Agent Interface:** Outputs special tokens for Python code execution during reasoning
49
  - **Executor:** Sandboxed Python environment with allow-listed modules
 
18
  pipeline_tag: text-generation
19
  ---
20
 
21
+ # DeepMath: A Lightweight Math Reasoning Agent
22
 
23
  <img src="https://cdn-uploads.huggingface.co/production/uploads/62d93cd728f9c86a4031562e/ndb_WmPavW1MONAjsGpYT.jpeg" style="width:600px" alt="An LLM is using a calculator to answer questions." />
24
 
25
  ## Model Description
26
 
27
+ **DeepMath** is a 4B parameter mathematical reasoning model that combines a fine-tuned LLM with a sandboxed Python executor. Built on [Qwen3-4B Thinking](https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507) and trained with **GRPO (Group Relative Policy Optimization)**, DeepMath generates concise Python snippets for computational steps instead of verbose text explanations, significantly reducing errors and output length.
28
 
29
  - **Developed by:** Intel AI Labs
30
  - **Model type:** Causal language model with agent capabilities
 
43
 
44
  ## Model Architecture
45
 
46
+ DeepMath uses a LoRA adapter fine-tuned on top of Qwen3-4B Thinking with the following components:
47
 
48
  - **Agent Interface:** Outputs special tokens for Python code execution during reasoning
49
  - **Executor:** Sandboxed Python environment with allow-listed modules