Musashi Hinck
		
	commited on
		
		
					Commit 
							
							·
						
						3eaf39c
	
1
								Parent(s):
							
							6e532d5
								
Adding usage and preprocessing script
Browse files- README.md +42 -1
 - processing_llavagemma.py +138 -0
 - usage.py +38 -0
 
    	
        README.md
    CHANGED
    
    | 
         @@ -25,7 +25,48 @@ This model has not been assessed for harm or biases, and should not be used for 
     | 
|
| 25 | 
         | 
| 26 | 
         
             
            ## How to Get Started with the Model
         
     | 
| 27 | 
         | 
| 28 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 29 | 
         | 
| 30 | 
         | 
| 31 | 
         | 
| 
         | 
|
| 25 | 
         | 
| 26 | 
         
             
            ## How to Get Started with the Model
         
     | 
| 27 | 
         | 
| 28 | 
         
            +
            Currently using `llava-gemma` requires a [modified preprocessor](/processing_llavagemma.py).
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            For example usage, see [`usage.py`](/usage.py) or the following code block:
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
            ```python
         
     | 
| 34 | 
         
            +
            import requests
         
     | 
| 35 | 
         
            +
            from PIL import Image
         
     | 
| 36 | 
         
            +
            from transformers import (
         
     | 
| 37 | 
         
            +
              LlavaForConditionalGeneration,
         
     | 
| 38 | 
         
            +
              AutoTokenizer,
         
     | 
| 39 | 
         
            +
              CLIPImageProcessor
         
     | 
| 40 | 
         
            +
            )
         
     | 
| 41 | 
         
            +
            from processing_llavagemma import LlavaGemmaProcessor # This is in this repo
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
            checkpoint = "Intel/llava-gemma-2b"
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
            # Load model
         
     | 
| 46 | 
         
            +
            model = LlavaForConditionalGeneration.from_pretrained(checkpoint)
         
     | 
| 47 | 
         
            +
            processor = LlavaGemmaProcessor(
         
     | 
| 48 | 
         
            +
                tokenizer=AutoTokenizer.from_pretrained(checkpoint),
         
     | 
| 49 | 
         
            +
                image_processor=CLIPImageProcessor.from_pretrained(checkpoint)
         
     | 
| 50 | 
         
            +
            )
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            # Prepare inputs
         
     | 
| 53 | 
         
            +
            # Use gemma chat template
         
     | 
| 54 | 
         
            +
            prompt = processor.tokenizer.apply_chat_template(
         
     | 
| 55 | 
         
            +
                [{'role': 'user', 'content': "What's the content of the image?<image>"}],
         
     | 
| 56 | 
         
            +
                tokenize=False,
         
     | 
| 57 | 
         
            +
                add_generation_prompt=True
         
     | 
| 58 | 
         
            +
            )
         
     | 
| 59 | 
         
            +
            url = "https://www.ilankelman.org/stopsigns/australia.jpg"
         
     | 
| 60 | 
         
            +
            image = Image.open(requests.get(url, stream=True).raw)
         
     | 
| 61 | 
         
            +
            inputs = processor(text=prompt, images=image, return_tensors="pt")
         
     | 
| 62 | 
         
            +
            inputs = {k: v.to('cuda') for k, v in inputs.items()}
         
     | 
| 63 | 
         
            +
                  
         
     | 
| 64 | 
         
            +
            # Generate
         
     | 
| 65 | 
         
            +
            generate_ids = model.generate(**inputs, max_length=30)
         
     | 
| 66 | 
         
            +
            output = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         
     | 
| 67 | 
         
            +
            print(output)
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
            ```
         
     | 
| 70 | 
         | 
| 71 | 
         | 
| 72 | 
         | 
    	
        processing_llavagemma.py
    ADDED
    
    | 
         @@ -0,0 +1,138 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # coding=utf-8
         
     | 
| 2 | 
         
            +
            # Copyright 2023 The HuggingFace Inc. team.
         
     | 
| 3 | 
         
            +
            #
         
     | 
| 4 | 
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 5 | 
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 6 | 
         
            +
            # You may obtain a copy of the License at
         
     | 
| 7 | 
         
            +
            #
         
     | 
| 8 | 
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 9 | 
         
            +
            #
         
     | 
| 10 | 
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 11 | 
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 12 | 
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 13 | 
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 14 | 
         
            +
            # limitations under the License.
         
     | 
| 15 | 
         
            +
            """
         
     | 
| 16 | 
         
            +
            Processor class for Llava.
         
     | 
| 17 | 
         
            +
            Modified to include support for Gemma tokenizer.
         
     | 
| 18 | 
         
            +
            """
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            from typing import List, Optional, Union
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            from transformers.feature_extraction_utils import BatchFeature
         
     | 
| 24 | 
         
            +
            from transformers.image_utils import ImageInput
         
     | 
| 25 | 
         
            +
            from transformers.processing_utils import ProcessorMixin
         
     | 
| 26 | 
         
            +
            from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
         
     | 
| 27 | 
         
            +
            from transformers.utils import TensorType
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            class LlavaGemmaProcessor(ProcessorMixin):
         
     | 
| 31 | 
         
            +
                r"""
         
     | 
| 32 | 
         
            +
                Constructs a Llava processor which wraps a Llava image processor and a Llava tokenizer into a single processor.
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                [`LlavaProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the
         
     | 
| 35 | 
         
            +
                [`~LlavaProcessor.__call__`] and [`~LlavaProcessor.decode`] for more information.
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                Args:
         
     | 
| 38 | 
         
            +
                    image_processor ([`CLIPImageProcessor`], *optional*):
         
     | 
| 39 | 
         
            +
                        The image processor is a required input.
         
     | 
| 40 | 
         
            +
                    tokenizer ([`LlamaTokenizerFast`], *optional*):
         
     | 
| 41 | 
         
            +
                        The tokenizer is a required input.
         
     | 
| 42 | 
         
            +
                """
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                attributes = ["image_processor", "tokenizer"]
         
     | 
| 45 | 
         
            +
                image_processor_class = "CLIPImageProcessor"
         
     | 
| 46 | 
         
            +
                tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast",
         
     | 
| 47 | 
         
            +
                                   "GemmaTokenizer", "GemmaTokenizerFast")
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                def __init__(self, image_processor=None, tokenizer=None):
         
     | 
| 50 | 
         
            +
                    super().__init__(image_processor, tokenizer)
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                def __call__(
         
     | 
| 53 | 
         
            +
                    self,
         
     | 
| 54 | 
         
            +
                    text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
         
     | 
| 55 | 
         
            +
                    images: ImageInput = None,
         
     | 
| 56 | 
         
            +
                    padding: Union[bool, str, PaddingStrategy] = False,
         
     | 
| 57 | 
         
            +
                    truncation: Union[bool, str, TruncationStrategy] = None,
         
     | 
| 58 | 
         
            +
                    max_length=None,
         
     | 
| 59 | 
         
            +
                    return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
         
     | 
| 60 | 
         
            +
                ) -> BatchFeature:
         
     | 
| 61 | 
         
            +
                    """
         
     | 
| 62 | 
         
            +
                    Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
         
     | 
| 63 | 
         
            +
                    and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
         
     | 
| 64 | 
         
            +
                    the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
         
     | 
| 65 | 
         
            +
                    CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
         
     | 
| 66 | 
         
            +
                    of the above two methods for more information.
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                    Args:
         
     | 
| 69 | 
         
            +
                        text (`str`, `List[str]`, `List[List[str]]`):
         
     | 
| 70 | 
         
            +
                            The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
         
     | 
| 71 | 
         
            +
                            (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
         
     | 
| 72 | 
         
            +
                            `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
         
     | 
| 73 | 
         
            +
                        images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
         
     | 
| 74 | 
         
            +
                            The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
         
     | 
| 75 | 
         
            +
                            tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
         
     | 
| 76 | 
         
            +
                            number of channels, H and W are image height and width.
         
     | 
| 77 | 
         
            +
                        padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
         
     | 
| 78 | 
         
            +
                            Select a strategy to pad the returned sequences (according to the model's padding side and padding
         
     | 
| 79 | 
         
            +
                            index) among:
         
     | 
| 80 | 
         
            +
                            - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
         
     | 
| 81 | 
         
            +
                              sequence if provided).
         
     | 
| 82 | 
         
            +
                            - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
         
     | 
| 83 | 
         
            +
                              acceptable input length for the model if that argument is not provided.
         
     | 
| 84 | 
         
            +
                            - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
         
     | 
| 85 | 
         
            +
                              lengths).
         
     | 
| 86 | 
         
            +
                        max_length (`int`, *optional*):
         
     | 
| 87 | 
         
            +
                            Maximum length of the returned list and optionally padding length (see above).
         
     | 
| 88 | 
         
            +
                        truncation (`bool`, *optional*):
         
     | 
| 89 | 
         
            +
                            Activates truncation to cut input sequences longer than `max_length` to `max_length`.
         
     | 
| 90 | 
         
            +
                        return_tensors (`str` or [`~utils.TensorType`], *optional*):
         
     | 
| 91 | 
         
            +
                            If set, will return tensors of a particular framework. Acceptable values are:
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
                            - `'tf'`: Return TensorFlow `tf.constant` objects.
         
     | 
| 94 | 
         
            +
                            - `'pt'`: Return PyTorch `torch.Tensor` objects.
         
     | 
| 95 | 
         
            +
                            - `'np'`: Return NumPy `np.ndarray` objects.
         
     | 
| 96 | 
         
            +
                            - `'jax'`: Return JAX `jnp.ndarray` objects.
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                    Returns:
         
     | 
| 99 | 
         
            +
                        [`BatchFeature`]: A [`BatchFeature`] with the following fields:
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                        - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
         
     | 
| 102 | 
         
            +
                        - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
         
     | 
| 103 | 
         
            +
                          `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
         
     | 
| 104 | 
         
            +
                          `None`).
         
     | 
| 105 | 
         
            +
                        - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
         
     | 
| 106 | 
         
            +
                    """
         
     | 
| 107 | 
         
            +
                    if images is not None:
         
     | 
| 108 | 
         
            +
                        pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"]
         
     | 
| 109 | 
         
            +
                    else:
         
     | 
| 110 | 
         
            +
                        pixel_values = None
         
     | 
| 111 | 
         
            +
                    text_inputs = self.tokenizer(
         
     | 
| 112 | 
         
            +
                        text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
         
     | 
| 113 | 
         
            +
                    )
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                    return BatchFeature(data={**text_inputs, "pixel_values": pixel_values})
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
         
     | 
| 118 | 
         
            +
                def batch_decode(self, *args, **kwargs):
         
     | 
| 119 | 
         
            +
                    """
         
     | 
| 120 | 
         
            +
                    This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
         
     | 
| 121 | 
         
            +
                    refer to the docstring of this method for more information.
         
     | 
| 122 | 
         
            +
                    """
         
     | 
| 123 | 
         
            +
                    return self.tokenizer.batch_decode(*args, **kwargs)
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
                # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
         
     | 
| 126 | 
         
            +
                def decode(self, *args, **kwargs):
         
     | 
| 127 | 
         
            +
                    """
         
     | 
| 128 | 
         
            +
                    This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
         
     | 
| 129 | 
         
            +
                    the docstring of this method for more information.
         
     | 
| 130 | 
         
            +
                    """
         
     | 
| 131 | 
         
            +
                    return self.tokenizer.decode(*args, **kwargs)
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                @property
         
     | 
| 134 | 
         
            +
                # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
         
     | 
| 135 | 
         
            +
                def model_input_names(self):
         
     | 
| 136 | 
         
            +
                    tokenizer_input_names = self.tokenizer.model_input_names
         
     | 
| 137 | 
         
            +
                    image_processor_input_names = self.image_processor.model_input_names
         
     | 
| 138 | 
         
            +
                    return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
         
     | 
    	
        usage.py
    ADDED
    
    | 
         @@ -0,0 +1,38 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import transformers
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            print(transformers.__version__)
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            import requests
         
     | 
| 6 | 
         
            +
            from PIL import Image
         
     | 
| 7 | 
         
            +
            from transformers import (
         
     | 
| 8 | 
         
            +
              LlavaForConditionalGeneration,
         
     | 
| 9 | 
         
            +
              AutoTokenizer,
         
     | 
| 10 | 
         
            +
              CLIPImageProcessor
         
     | 
| 11 | 
         
            +
            )
         
     | 
| 12 | 
         
            +
            from processing_llavagemma import LlavaGemmaProcessor
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            checkpoint = "Intel/llava-gemma-2b"
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            model = LlavaForConditionalGeneration.from_pretrained(checkpoint)
         
     | 
| 17 | 
         
            +
            processor = LlavaGemmaProcessor(
         
     | 
| 18 | 
         
            +
                tokenizer=AutoTokenizer.from_pretrained(checkpoint),
         
     | 
| 19 | 
         
            +
                image_processor=CLIPImageProcessor.from_pretrained(checkpoint)
         
     | 
| 20 | 
         
            +
            )
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            model.to('cuda')
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            prompt = processor.tokenizer.apply_chat_template(
         
     | 
| 26 | 
         
            +
                [{'role': 'user', 'content': "What's the content of the image?<image>"}],
         
     | 
| 27 | 
         
            +
                tokenize=False,
         
     | 
| 28 | 
         
            +
                add_generation_prompt=True
         
     | 
| 29 | 
         
            +
            )
         
     | 
| 30 | 
         
            +
            url = "https://www.ilankelman.org/stopsigns/australia.jpg"
         
     | 
| 31 | 
         
            +
            image = Image.open(requests.get(url, stream=True).raw)
         
     | 
| 32 | 
         
            +
            inputs = processor(text=prompt, images=image, return_tensors="pt")
         
     | 
| 33 | 
         
            +
            inputs = {k: v.to('cuda') for k, v in inputs.items()}
         
     | 
| 34 | 
         
            +
                  
         
     | 
| 35 | 
         
            +
            # Generate
         
     | 
| 36 | 
         
            +
            generate_ids = model.generate(**inputs, max_length=30)
         
     | 
| 37 | 
         
            +
            output = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         
     | 
| 38 | 
         
            +
            print(output)
         
     |