Commit
·
d2b040c
1
Parent(s):
9904f80
Upload flash_attn_triton.py
Browse files- flash_attn_triton.py +484 -0
flash_attn_triton.py
ADDED
|
@@ -0,0 +1,484 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copied from https://github.com/HazyResearch/flash-attention/blob/eff9fe6b8076df59d64d7a3f464696738a3c7c24/flash_attn/flash_attn_triton.py
|
| 3 |
+
update imports to use 'triton_pre_mlir'
|
| 4 |
+
|
| 5 |
+
*Experimental* implementation of FlashAttention in Triton.
|
| 6 |
+
Tested with triton==2.0.0.dev20221202.
|
| 7 |
+
Triton 2.0 has a new backend (MLIR) but seems like it doesn't yet work for head dimensions
|
| 8 |
+
other than 64:
|
| 9 |
+
https://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207
|
| 10 |
+
We'll update this implementation with the new Triton backend once this is fixed.
|
| 11 |
+
|
| 12 |
+
We use the FlashAttention implementation from Phil Tillet a starting point.
|
| 13 |
+
https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
|
| 14 |
+
|
| 15 |
+
Changes:
|
| 16 |
+
- Implement both causal and non-causal attention.
|
| 17 |
+
- Implement both self-attention and cross-attention.
|
| 18 |
+
- Support arbitrary seqlens (not just multiples of 128), for both forward and backward.
|
| 19 |
+
- Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward.
|
| 20 |
+
- Support attention bias.
|
| 21 |
+
- Speed up the forward pass a bit, and only store the LSE instead of m and l.
|
| 22 |
+
- Make the backward for d=128 much faster by reducing register spilling.
|
| 23 |
+
- Optionally parallelize the backward pass across seqlen_k, to deal with the case of
|
| 24 |
+
small batch size * nheads.
|
| 25 |
+
|
| 26 |
+
Caution:
|
| 27 |
+
- This is an *experimental* implementation. The forward pass should be quite robust but
|
| 28 |
+
I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler).
|
| 29 |
+
- This implementation has only been tested on A100.
|
| 30 |
+
- If you plan to use headdim other than 64 and 128, you should test for race conditions
|
| 31 |
+
(due to the Triton compiler), as done in tests/test_flash_attn.py
|
| 32 |
+
"test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
|
| 33 |
+
for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
|
| 34 |
+
that there are none left for other head dimensions.
|
| 35 |
+
|
| 36 |
+
Differences between this Triton version and the CUDA version:
|
| 37 |
+
- Triton version doesn't support dropout.
|
| 38 |
+
- Triton forward is generally faster than CUDA forward, while Triton backward is
|
| 39 |
+
generally slower than CUDA backward. Overall Triton forward + backward is slightly slower
|
| 40 |
+
than CUDA forward + backward.
|
| 41 |
+
- Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
|
| 42 |
+
- Triton version supports attention bias, while CUDA version doesn't.
|
| 43 |
+
"""
|
| 44 |
+
import math
|
| 45 |
+
import torch
|
| 46 |
+
import triton_pre_mlir as triton
|
| 47 |
+
import triton_pre_mlir.language as tl
|
| 48 |
+
|
| 49 |
+
@triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM']})
|
| 50 |
+
@triton.jit
|
| 51 |
+
def _fwd_kernel(Q, K, V, Bias, Out, Lse, TMP, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
|
| 52 |
+
start_m = tl.program_id(0)
|
| 53 |
+
off_hb = tl.program_id(1)
|
| 54 |
+
off_b = off_hb // nheads
|
| 55 |
+
off_h = off_hb % nheads
|
| 56 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
| 57 |
+
offs_n = tl.arange(0, BLOCK_N)
|
| 58 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
| 59 |
+
q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :])
|
| 60 |
+
k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :])
|
| 61 |
+
v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :])
|
| 62 |
+
if BIAS_TYPE == 'vector':
|
| 63 |
+
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
|
| 64 |
+
elif BIAS_TYPE == 'matrix':
|
| 65 |
+
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (offs_m[:, None] * stride_bm + offs_n[None, :])
|
| 66 |
+
t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
|
| 67 |
+
lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
|
| 68 |
+
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
|
| 69 |
+
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
| 70 |
+
if EVEN_M & EVEN_N:
|
| 71 |
+
if EVEN_HEADDIM:
|
| 72 |
+
q = tl.load(q_ptrs)
|
| 73 |
+
else:
|
| 74 |
+
q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
| 75 |
+
elif EVEN_HEADDIM:
|
| 76 |
+
q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
|
| 77 |
+
else:
|
| 78 |
+
q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
|
| 79 |
+
end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
|
| 80 |
+
for start_n in range(0, end_n, BLOCK_N):
|
| 81 |
+
start_n = tl.multiple_of(start_n, BLOCK_N)
|
| 82 |
+
if EVEN_N & EVEN_M:
|
| 83 |
+
if EVEN_HEADDIM:
|
| 84 |
+
k = tl.load(k_ptrs + start_n * stride_kn)
|
| 85 |
+
else:
|
| 86 |
+
k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0)
|
| 87 |
+
elif EVEN_HEADDIM:
|
| 88 |
+
k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0)
|
| 89 |
+
else:
|
| 90 |
+
k = tl.load(k_ptrs + start_n * stride_kn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
|
| 91 |
+
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
| 92 |
+
qk += tl.dot(q, k, trans_b=True)
|
| 93 |
+
if not EVEN_N:
|
| 94 |
+
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float('-inf'))
|
| 95 |
+
if IS_CAUSAL:
|
| 96 |
+
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float('-inf'))
|
| 97 |
+
if BIAS_TYPE != 'none':
|
| 98 |
+
if BIAS_TYPE == 'vector':
|
| 99 |
+
if EVEN_N:
|
| 100 |
+
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
| 101 |
+
else:
|
| 102 |
+
bias = tl.load(b_ptrs + start_n, mask=start_n + offs_n < seqlen_k, other=0.0).to(tl.float32)
|
| 103 |
+
bias = bias[None, :]
|
| 104 |
+
elif BIAS_TYPE == 'matrix':
|
| 105 |
+
if EVEN_M & EVEN_N:
|
| 106 |
+
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
| 107 |
+
else:
|
| 108 |
+
bias = tl.load(b_ptrs + start_n, mask=(offs_m[:, None] < seqlen_q) & ((start_n + offs_n)[None, :] < seqlen_k), other=0.0).to(tl.float32)
|
| 109 |
+
qk = qk * softmax_scale + bias
|
| 110 |
+
m_ij = tl.maximum(tl.max(qk, 1), lse_i)
|
| 111 |
+
p = tl.exp(qk - m_ij[:, None])
|
| 112 |
+
else:
|
| 113 |
+
m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
|
| 114 |
+
p = tl.exp(qk * softmax_scale - m_ij[:, None])
|
| 115 |
+
l_ij = tl.sum(p, 1)
|
| 116 |
+
acc_o_scale = tl.exp(m_i - m_ij)
|
| 117 |
+
tl.store(t_ptrs, acc_o_scale)
|
| 118 |
+
acc_o_scale = tl.load(t_ptrs)
|
| 119 |
+
acc_o = acc_o * acc_o_scale[:, None]
|
| 120 |
+
if EVEN_N & EVEN_M:
|
| 121 |
+
if EVEN_HEADDIM:
|
| 122 |
+
v = tl.load(v_ptrs + start_n * stride_vn)
|
| 123 |
+
else:
|
| 124 |
+
v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0)
|
| 125 |
+
elif EVEN_HEADDIM:
|
| 126 |
+
v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0)
|
| 127 |
+
else:
|
| 128 |
+
v = tl.load(v_ptrs + start_n * stride_vn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
|
| 129 |
+
p = p.to(v.dtype)
|
| 130 |
+
acc_o += tl.dot(p, v)
|
| 131 |
+
m_i = m_ij
|
| 132 |
+
l_i_new = tl.exp(lse_i - m_ij) + l_ij
|
| 133 |
+
lse_i = m_ij + tl.log(l_i_new)
|
| 134 |
+
o_scale = tl.exp(m_i - lse_i)
|
| 135 |
+
tl.store(t_ptrs, o_scale)
|
| 136 |
+
o_scale = tl.load(t_ptrs)
|
| 137 |
+
acc_o = acc_o * o_scale[:, None]
|
| 138 |
+
start_m = tl.program_id(0)
|
| 139 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
| 140 |
+
lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
|
| 141 |
+
tl.store(lse_ptrs, lse_i)
|
| 142 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
| 143 |
+
out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :])
|
| 144 |
+
if EVEN_M:
|
| 145 |
+
if EVEN_HEADDIM:
|
| 146 |
+
tl.store(out_ptrs, acc_o)
|
| 147 |
+
else:
|
| 148 |
+
tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim)
|
| 149 |
+
elif EVEN_HEADDIM:
|
| 150 |
+
tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
|
| 151 |
+
else:
|
| 152 |
+
tl.store(out_ptrs, acc_o, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
|
| 153 |
+
|
| 154 |
+
@triton.jit
|
| 155 |
+
def _bwd_preprocess_do_o_dot(Out, DO, Delta, stride_ob, stride_oh, stride_om, stride_dob, stride_doh, stride_dom, nheads, seqlen_q, seqlen_q_rounded, headdim, BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr):
|
| 156 |
+
start_m = tl.program_id(0)
|
| 157 |
+
off_hb = tl.program_id(1)
|
| 158 |
+
off_b = off_hb // nheads
|
| 159 |
+
off_h = off_hb % nheads
|
| 160 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
| 161 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
| 162 |
+
o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
|
| 163 |
+
do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
|
| 164 |
+
delta = tl.sum(o * do, axis=1)
|
| 165 |
+
tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
|
| 166 |
+
|
| 167 |
+
@triton.jit
|
| 168 |
+
def _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr):
|
| 169 |
+
if EVEN_N & EVEN_M:
|
| 170 |
+
if EVEN_HEADDIM:
|
| 171 |
+
tl.store(dv_ptrs, dv)
|
| 172 |
+
tl.store(dk_ptrs, dk)
|
| 173 |
+
else:
|
| 174 |
+
tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
|
| 175 |
+
tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
|
| 176 |
+
elif EVEN_HEADDIM:
|
| 177 |
+
tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
|
| 178 |
+
tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
|
| 179 |
+
else:
|
| 180 |
+
tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
| 181 |
+
tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
| 182 |
+
|
| 183 |
+
@triton.jit
|
| 184 |
+
def _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD: tl.constexpr, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
|
| 185 |
+
begin_m = 0 if not IS_CAUSAL else start_n * BLOCK_N // BLOCK_M * BLOCK_M
|
| 186 |
+
offs_qm = begin_m + tl.arange(0, BLOCK_M)
|
| 187 |
+
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
| 188 |
+
offs_m = tl.arange(0, BLOCK_M)
|
| 189 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
| 190 |
+
q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :])
|
| 191 |
+
k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :])
|
| 192 |
+
v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
|
| 193 |
+
do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
|
| 194 |
+
dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
|
| 195 |
+
if BIAS_TYPE == 'vector':
|
| 196 |
+
b_ptrs = Bias + offs_n
|
| 197 |
+
elif BIAS_TYPE == 'matrix':
|
| 198 |
+
b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
|
| 199 |
+
dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
| 200 |
+
dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
| 201 |
+
if begin_m >= seqlen_q:
|
| 202 |
+
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
| 203 |
+
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
| 204 |
+
_bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
|
| 205 |
+
return
|
| 206 |
+
if EVEN_N & EVEN_M:
|
| 207 |
+
if EVEN_HEADDIM:
|
| 208 |
+
k = tl.load(k_ptrs)
|
| 209 |
+
v = tl.load(v_ptrs)
|
| 210 |
+
else:
|
| 211 |
+
k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
| 212 |
+
v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
| 213 |
+
elif EVEN_HEADDIM:
|
| 214 |
+
k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
| 215 |
+
v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
| 216 |
+
else:
|
| 217 |
+
k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
|
| 218 |
+
v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
|
| 219 |
+
num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
|
| 220 |
+
for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
|
| 221 |
+
start_m = tl.multiple_of(start_m, BLOCK_M)
|
| 222 |
+
offs_m_curr = start_m + offs_m
|
| 223 |
+
if EVEN_M & EVEN_HEADDIM:
|
| 224 |
+
q = tl.load(q_ptrs)
|
| 225 |
+
elif EVEN_HEADDIM:
|
| 226 |
+
q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
|
| 227 |
+
else:
|
| 228 |
+
q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
|
| 229 |
+
qk = tl.dot(q, k, trans_b=True)
|
| 230 |
+
if not EVEN_N:
|
| 231 |
+
qk = tl.where(offs_n[None, :] < seqlen_k, qk, float('-inf'))
|
| 232 |
+
if IS_CAUSAL:
|
| 233 |
+
qk = tl.where(offs_m_curr[:, None] >= offs_n[None, :], qk, float('-inf'))
|
| 234 |
+
if BIAS_TYPE != 'none':
|
| 235 |
+
tl.debug_barrier()
|
| 236 |
+
if BIAS_TYPE == 'vector':
|
| 237 |
+
if EVEN_N:
|
| 238 |
+
bias = tl.load(b_ptrs).to(tl.float32)
|
| 239 |
+
else:
|
| 240 |
+
bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32)
|
| 241 |
+
bias = bias[None, :]
|
| 242 |
+
elif BIAS_TYPE == 'matrix':
|
| 243 |
+
if EVEN_M & EVEN_N:
|
| 244 |
+
bias = tl.load(b_ptrs).to(tl.float32)
|
| 245 |
+
else:
|
| 246 |
+
bias = tl.load(b_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_n[None, :] < seqlen_k), other=0.0).to(tl.float32)
|
| 247 |
+
qk = qk * softmax_scale + bias
|
| 248 |
+
if not EVEN_M & EVEN_HEADDIM:
|
| 249 |
+
tl.debug_barrier()
|
| 250 |
+
lse_i = tl.load(LSE + offs_m_curr)
|
| 251 |
+
if BIAS_TYPE == 'none':
|
| 252 |
+
p = tl.exp(qk * softmax_scale - lse_i[:, None])
|
| 253 |
+
else:
|
| 254 |
+
p = tl.exp(qk - lse_i[:, None])
|
| 255 |
+
if EVEN_M & EVEN_HEADDIM:
|
| 256 |
+
do = tl.load(do_ptrs)
|
| 257 |
+
else:
|
| 258 |
+
do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
|
| 259 |
+
dv += tl.dot(p.to(do.dtype), do, trans_a=True)
|
| 260 |
+
if not EVEN_M & EVEN_HEADDIM:
|
| 261 |
+
tl.debug_barrier()
|
| 262 |
+
dp = tl.dot(do, v, trans_b=True)
|
| 263 |
+
if not EVEN_HEADDIM:
|
| 264 |
+
tl.debug_barrier()
|
| 265 |
+
Di = tl.load(D + offs_m_curr)
|
| 266 |
+
ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
|
| 267 |
+
dk += tl.dot(ds, q, trans_a=True)
|
| 268 |
+
if not EVEN_M & EVEN_HEADDIM:
|
| 269 |
+
tl.debug_barrier()
|
| 270 |
+
if not ATOMIC_ADD:
|
| 271 |
+
if EVEN_M & EVEN_HEADDIM:
|
| 272 |
+
dq = tl.load(dq_ptrs, eviction_policy='evict_last')
|
| 273 |
+
dq += tl.dot(ds, k)
|
| 274 |
+
tl.store(dq_ptrs, dq, eviction_policy='evict_last')
|
| 275 |
+
elif EVEN_HEADDIM:
|
| 276 |
+
dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0, eviction_policy='evict_last')
|
| 277 |
+
dq += tl.dot(ds, k)
|
| 278 |
+
tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q, eviction_policy='evict_last')
|
| 279 |
+
else:
|
| 280 |
+
dq = tl.load(dq_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0, eviction_policy='evict_last')
|
| 281 |
+
dq += tl.dot(ds, k)
|
| 282 |
+
tl.store(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), eviction_policy='evict_last')
|
| 283 |
+
else:
|
| 284 |
+
dq = tl.dot(ds, k)
|
| 285 |
+
if EVEN_M & EVEN_HEADDIM:
|
| 286 |
+
tl.atomic_add(dq_ptrs, dq)
|
| 287 |
+
elif EVEN_HEADDIM:
|
| 288 |
+
tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
|
| 289 |
+
else:
|
| 290 |
+
tl.atomic_add(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
|
| 291 |
+
dq_ptrs += BLOCK_M * stride_dqm
|
| 292 |
+
q_ptrs += BLOCK_M * stride_qm
|
| 293 |
+
do_ptrs += BLOCK_M * stride_dom
|
| 294 |
+
if BIAS_TYPE == 'matrix':
|
| 295 |
+
b_ptrs += BLOCK_M * stride_bm
|
| 296 |
+
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
| 297 |
+
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
| 298 |
+
_bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
|
| 299 |
+
|
| 300 |
+
def init_to_zero(name):
|
| 301 |
+
return lambda nargs: nargs[name].zero_()
|
| 302 |
+
|
| 303 |
+
@triton.autotune(configs=[triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ'))], key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'])
|
| 304 |
+
@triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM']})
|
| 305 |
+
@triton.jit
|
| 306 |
+
def _bwd_kernel(Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_dob, stride_doh, stride_dom, stride_dqb, stride_dqh, stride_dqm, stride_dkb, stride_dkh, stride_dkn, stride_dvb, stride_dvh, stride_dvn, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, SEQUENCE_PARALLEL: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
|
| 307 |
+
off_hb = tl.program_id(1)
|
| 308 |
+
off_b = off_hb // nheads
|
| 309 |
+
off_h = off_hb % nheads
|
| 310 |
+
Q += off_b * stride_qb + off_h * stride_qh
|
| 311 |
+
K += off_b * stride_kb + off_h * stride_kh
|
| 312 |
+
V += off_b * stride_vb + off_h * stride_vh
|
| 313 |
+
DO += off_b * stride_dob + off_h * stride_doh
|
| 314 |
+
DQ += off_b * stride_dqb + off_h * stride_dqh
|
| 315 |
+
DK += off_b * stride_dkb + off_h * stride_dkh
|
| 316 |
+
DV += off_b * stride_dvb + off_h * stride_dvh
|
| 317 |
+
if BIAS_TYPE != 'none':
|
| 318 |
+
Bias += off_b * stride_bb + off_h * stride_bh
|
| 319 |
+
D += off_hb * seqlen_q_rounded
|
| 320 |
+
LSE += off_hb * seqlen_q_rounded
|
| 321 |
+
if not SEQUENCE_PARALLEL:
|
| 322 |
+
num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
|
| 323 |
+
for start_n in range(0, num_block_n):
|
| 324 |
+
_bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=False, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
|
| 325 |
+
else:
|
| 326 |
+
start_n = tl.program_id(0)
|
| 327 |
+
_bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=True, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
|
| 328 |
+
|
| 329 |
+
def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
| 330 |
+
(batch, seqlen_q, nheads, d) = q.shape
|
| 331 |
+
(_, seqlen_k, _, _) = k.shape
|
| 332 |
+
assert k.shape == (batch, seqlen_k, nheads, d)
|
| 333 |
+
assert v.shape == (batch, seqlen_k, nheads, d)
|
| 334 |
+
assert d <= 128, 'FlashAttention only support head dimensions up to 128'
|
| 335 |
+
assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
|
| 336 |
+
assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16'
|
| 337 |
+
assert q.is_cuda and k.is_cuda and v.is_cuda
|
| 338 |
+
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
| 339 |
+
has_bias = bias is not None
|
| 340 |
+
bias_type = 'none'
|
| 341 |
+
if has_bias:
|
| 342 |
+
assert bias.dtype in [q.dtype, torch.float]
|
| 343 |
+
assert bias.is_cuda
|
| 344 |
+
assert bias.dim() == 4
|
| 345 |
+
if bias.stride(-1) != 1:
|
| 346 |
+
bias = bias.contiguous()
|
| 347 |
+
if bias.shape[2:] == (1, seqlen_k):
|
| 348 |
+
bias_type = 'vector'
|
| 349 |
+
elif bias.shape[2:] == (seqlen_q, seqlen_k):
|
| 350 |
+
bias_type = 'matrix'
|
| 351 |
+
else:
|
| 352 |
+
raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
|
| 353 |
+
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
| 354 |
+
bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
|
| 355 |
+
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
| 356 |
+
lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
|
| 357 |
+
tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
|
| 358 |
+
o = torch.empty_like(q)
|
| 359 |
+
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
| 360 |
+
BLOCK = 128
|
| 361 |
+
num_warps = 4 if d <= 64 else 8
|
| 362 |
+
grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
|
| 363 |
+
_fwd_kernel[grid](q, k, v, bias, o, lse, tmp, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, o.stride(0), o.stride(2), o.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, bias_type, causal, BLOCK_HEADDIM, BLOCK_M=BLOCK, BLOCK_N=BLOCK, num_warps=num_warps, num_stages=1)
|
| 364 |
+
return (o, lse, softmax_scale)
|
| 365 |
+
|
| 366 |
+
def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None):
|
| 367 |
+
if do.stride(-1) != 1:
|
| 368 |
+
do = do.contiguous()
|
| 369 |
+
(batch, seqlen_q, nheads, d) = q.shape
|
| 370 |
+
(_, seqlen_k, _, _) = k.shape
|
| 371 |
+
assert d <= 128
|
| 372 |
+
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
| 373 |
+
assert lse.shape == (batch, nheads, seqlen_q_rounded)
|
| 374 |
+
assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1
|
| 375 |
+
assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1
|
| 376 |
+
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
| 377 |
+
dq_accum = torch.empty_like(q, dtype=torch.float32)
|
| 378 |
+
delta = torch.empty_like(lse)
|
| 379 |
+
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
| 380 |
+
grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
|
| 381 |
+
_bwd_preprocess_do_o_dot[grid](o, do, delta, o.stride(0), o.stride(2), o.stride(1), do.stride(0), do.stride(2), do.stride(1), nheads, seqlen_q, seqlen_q_rounded, d, BLOCK_M=128, BLOCK_HEADDIM=BLOCK_HEADDIM)
|
| 382 |
+
has_bias = bias is not None
|
| 383 |
+
bias_type = 'none'
|
| 384 |
+
if has_bias:
|
| 385 |
+
assert bias.dtype in [q.dtype, torch.float]
|
| 386 |
+
assert bias.is_cuda
|
| 387 |
+
assert bias.dim() == 4
|
| 388 |
+
assert bias.stride(-1) == 1
|
| 389 |
+
if bias.shape[2:] == (1, seqlen_k):
|
| 390 |
+
bias_type = 'vector'
|
| 391 |
+
elif bias.shape[2:] == (seqlen_q, seqlen_k):
|
| 392 |
+
bias_type = 'matrix'
|
| 393 |
+
else:
|
| 394 |
+
raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
|
| 395 |
+
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
| 396 |
+
bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
|
| 397 |
+
grid = lambda META: (triton.cdiv(seqlen_k, META['BLOCK_N']) if META['SEQUENCE_PARALLEL'] else 1, batch * nheads)
|
| 398 |
+
_bwd_kernel[grid](q, k, v, bias, do, dq_accum, dk, dv, lse, delta, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, do.stride(0), do.stride(2), do.stride(1), dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1), dk.stride(0), dk.stride(2), dk.stride(1), dv.stride(0), dv.stride(2), dv.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, bias_type, causal, BLOCK_HEADDIM)
|
| 399 |
+
dq.copy_(dq_accum)
|
| 400 |
+
|
| 401 |
+
class FlashAttnQKVPackedFunc(torch.autograd.Function):
|
| 402 |
+
|
| 403 |
+
@staticmethod
|
| 404 |
+
def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
|
| 405 |
+
"""
|
| 406 |
+
qkv: (batch, seqlen, 3, nheads, headdim)
|
| 407 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
|
| 408 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
|
| 409 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
|
| 410 |
+
"""
|
| 411 |
+
if qkv.stride(-1) != 1:
|
| 412 |
+
qkv = qkv.contiguous()
|
| 413 |
+
(o, lse, ctx.softmax_scale) = _flash_attn_forward(qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], bias=bias, causal=causal, softmax_scale=softmax_scale)
|
| 414 |
+
ctx.save_for_backward(qkv, o, lse, bias)
|
| 415 |
+
ctx.causal = causal
|
| 416 |
+
return o
|
| 417 |
+
|
| 418 |
+
@staticmethod
|
| 419 |
+
def backward(ctx, do):
|
| 420 |
+
(qkv, o, lse, bias) = ctx.saved_tensors
|
| 421 |
+
assert not ctx.needs_input_grad[1], 'FlashAttention does not support bias gradient yet'
|
| 422 |
+
with torch.inference_mode():
|
| 423 |
+
dqkv = torch.empty_like(qkv)
|
| 424 |
+
_flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse, dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
|
| 425 |
+
return (dqkv, None, None, None)
|
| 426 |
+
flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
|
| 427 |
+
|
| 428 |
+
class FlashAttnKVPackedFunc(torch.autograd.Function):
|
| 429 |
+
|
| 430 |
+
@staticmethod
|
| 431 |
+
def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
|
| 432 |
+
"""
|
| 433 |
+
q: (batch, seqlen_q, nheads, headdim)
|
| 434 |
+
kv: (batch, seqlen_k, 2, nheads, headdim)
|
| 435 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
| 436 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
| 437 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
| 438 |
+
"""
|
| 439 |
+
(q, kv) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
|
| 440 |
+
(o, lse, ctx.softmax_scale) = _flash_attn_forward(q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale)
|
| 441 |
+
ctx.save_for_backward(q, kv, o, lse, bias)
|
| 442 |
+
ctx.causal = causal
|
| 443 |
+
return o
|
| 444 |
+
|
| 445 |
+
@staticmethod
|
| 446 |
+
def backward(ctx, do):
|
| 447 |
+
(q, kv, o, lse, bias) = ctx.saved_tensors
|
| 448 |
+
if len(ctx.needs_input_grad) >= 3:
|
| 449 |
+
assert not ctx.needs_input_grad[2], 'FlashAttention does not support bias gradient yet'
|
| 450 |
+
with torch.inference_mode():
|
| 451 |
+
dq = torch.empty_like(q)
|
| 452 |
+
dkv = torch.empty_like(kv)
|
| 453 |
+
_flash_attn_backward(do, q, kv[:, :, 0], kv[:, :, 1], o, lse, dq, dkv[:, :, 0], dkv[:, :, 1], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
|
| 454 |
+
return (dq, dkv, None, None, None)
|
| 455 |
+
flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
|
| 456 |
+
|
| 457 |
+
class FlashAttnFunc(torch.autograd.Function):
|
| 458 |
+
|
| 459 |
+
@staticmethod
|
| 460 |
+
def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
|
| 461 |
+
"""
|
| 462 |
+
q: (batch_size, seqlen_q, nheads, headdim)
|
| 463 |
+
k, v: (batch_size, seqlen_k, nheads, headdim)
|
| 464 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
| 465 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
| 466 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
| 467 |
+
"""
|
| 468 |
+
(q, k, v) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
|
| 469 |
+
(o, lse, ctx.softmax_scale) = _flash_attn_forward(q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale)
|
| 470 |
+
ctx.save_for_backward(q, k, v, o, lse, bias)
|
| 471 |
+
ctx.causal = causal
|
| 472 |
+
return o
|
| 473 |
+
|
| 474 |
+
@staticmethod
|
| 475 |
+
def backward(ctx, do):
|
| 476 |
+
(q, k, v, o, lse, bias) = ctx.saved_tensors
|
| 477 |
+
assert not ctx.needs_input_grad[3], 'FlashAttention does not support bias gradient yet'
|
| 478 |
+
with torch.inference_mode():
|
| 479 |
+
dq = torch.empty_like(q)
|
| 480 |
+
dk = torch.empty_like(k)
|
| 481 |
+
dv = torch.empty_like(v)
|
| 482 |
+
_flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
|
| 483 |
+
return (dq, dk, dv, None, None, None)
|
| 484 |
+
flash_attn_func = FlashAttnFunc.apply
|