File size: 1,799 Bytes
			
			| 9748fb3 c30f7e6 9748fb3 36372a8 9748fb3 1e417f0 9748fb3 36372a8 9748fb3 36372a8 9748fb3 1e417f0 9748fb3 36372a8 9748fb3 36372a8 9748fb3 36372a8 9748fb3 36372a8 9748fb3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | ---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper tiny en-US - J3v2
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: PolyAI/minds14-en-US
      type: PolyAI/minds14
      config: en-US
      split: train[450:]
      args: en-US
    metrics:
    - name: Wer
      type: wer
      value: 0.33116883116883117
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper tiny en-US - J3v2
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14-en-US dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7183
- Wer Ortho: 0.3381
- Wer: 0.3312
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
| 0.0012        | 17.86 | 500  | 0.7183          | 0.3381    | 0.3312 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
 |