Initial upload (hf_transfer enabled)
Browse files- SSL_WavLM/WavLM.py +762 -0
- SSL_WavLM/__init__.py +0 -0
- SSL_WavLM/__pycache__/WavLM.cpython-310.pyc +0 -0
- SSL_WavLM/__pycache__/__init__.cpython-310.pyc +0 -0
- SSL_WavLM/__pycache__/modules.cpython-310.pyc +0 -0
- SSL_WavLM/model_convert.pt +3 -0
- SSL_WavLM/modules.py +827 -0
- Transformer_WavLM.py +148 -0
SSL_WavLM/WavLM.py
ADDED
|
@@ -0,0 +1,762 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing (https://arxiv.org/abs/2110.13900.pdf)
|
| 3 |
+
# Github source: https://github.com/microsoft/unilm/tree/master/wavlm
|
| 4 |
+
# Copyright (c) 2021 Microsoft
|
| 5 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 6 |
+
# Based on fairseq code bases
|
| 7 |
+
# https://github.com/pytorch/fairseq
|
| 8 |
+
# --------------------------------------------------------
|
| 9 |
+
|
| 10 |
+
import math
|
| 11 |
+
import logging
|
| 12 |
+
from typing import List, Optional, Tuple
|
| 13 |
+
|
| 14 |
+
import numpy as np
|
| 15 |
+
|
| 16 |
+
import torch
|
| 17 |
+
import torch.nn as nn
|
| 18 |
+
import torch.nn.functional as F
|
| 19 |
+
from torch.nn import LayerNorm
|
| 20 |
+
from .modules import (
|
| 21 |
+
Fp32GroupNorm,
|
| 22 |
+
Fp32LayerNorm,
|
| 23 |
+
GradMultiply,
|
| 24 |
+
MultiheadAttention,
|
| 25 |
+
SamePad,
|
| 26 |
+
init_bert_params,
|
| 27 |
+
get_activation_fn,
|
| 28 |
+
TransposeLast,
|
| 29 |
+
GLU_Linear,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
logger = logging.getLogger(__name__)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def compute_mask_indices(
|
| 36 |
+
shape: Tuple[int, int],
|
| 37 |
+
padding_mask: Optional[torch.Tensor],
|
| 38 |
+
mask_prob: float,
|
| 39 |
+
mask_length: int,
|
| 40 |
+
mask_type: str = "static",
|
| 41 |
+
mask_other: float = 0.0,
|
| 42 |
+
min_masks: int = 0,
|
| 43 |
+
no_overlap: bool = False,
|
| 44 |
+
min_space: int = 0,
|
| 45 |
+
) -> np.ndarray:
|
| 46 |
+
"""
|
| 47 |
+
Computes random mask spans for a given shape
|
| 48 |
+
|
| 49 |
+
Args:
|
| 50 |
+
shape: the the shape for which to compute masks.
|
| 51 |
+
should be of size 2 where first element is batch size and 2nd is timesteps
|
| 52 |
+
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
|
| 53 |
+
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
|
| 54 |
+
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
|
| 55 |
+
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
|
| 56 |
+
mask_type: how to compute mask lengths
|
| 57 |
+
static = fixed size
|
| 58 |
+
uniform = sample from uniform distribution [mask_other, mask_length*2]
|
| 59 |
+
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
|
| 60 |
+
poisson = sample from possion distribution with lambda = mask length
|
| 61 |
+
min_masks: minimum number of masked spans
|
| 62 |
+
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
|
| 63 |
+
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
bsz, all_sz = shape
|
| 67 |
+
mask = np.full((bsz, all_sz), False)
|
| 68 |
+
|
| 69 |
+
all_num_mask = int(
|
| 70 |
+
# add a random number for probabilistic rounding
|
| 71 |
+
mask_prob * all_sz / float(mask_length)
|
| 72 |
+
+ np.random.rand()
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
all_num_mask = max(min_masks, all_num_mask)
|
| 76 |
+
|
| 77 |
+
mask_idcs = []
|
| 78 |
+
for i in range(bsz):
|
| 79 |
+
if padding_mask is not None:
|
| 80 |
+
sz = all_sz - padding_mask[i].long().sum().item()
|
| 81 |
+
num_mask = int(
|
| 82 |
+
# add a random number for probabilistic rounding
|
| 83 |
+
mask_prob * sz / float(mask_length)
|
| 84 |
+
+ np.random.rand()
|
| 85 |
+
)
|
| 86 |
+
num_mask = max(min_masks, num_mask)
|
| 87 |
+
else:
|
| 88 |
+
sz = all_sz
|
| 89 |
+
num_mask = all_num_mask
|
| 90 |
+
|
| 91 |
+
if mask_type == "static":
|
| 92 |
+
lengths = np.full(num_mask, mask_length)
|
| 93 |
+
elif mask_type == "uniform":
|
| 94 |
+
lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask)
|
| 95 |
+
elif mask_type == "normal":
|
| 96 |
+
lengths = np.random.normal(mask_length, mask_other, size=num_mask)
|
| 97 |
+
lengths = [max(1, int(round(x))) for x in lengths]
|
| 98 |
+
elif mask_type == "poisson":
|
| 99 |
+
lengths = np.random.poisson(mask_length, size=num_mask)
|
| 100 |
+
lengths = [int(round(x)) for x in lengths]
|
| 101 |
+
else:
|
| 102 |
+
raise Exception("unknown mask selection " + mask_type)
|
| 103 |
+
|
| 104 |
+
if sum(lengths) == 0:
|
| 105 |
+
lengths[0] = min(mask_length, sz - 1)
|
| 106 |
+
|
| 107 |
+
if no_overlap:
|
| 108 |
+
mask_idc = []
|
| 109 |
+
|
| 110 |
+
def arrange(s, e, length, keep_length):
|
| 111 |
+
span_start = np.random.randint(s, e - length)
|
| 112 |
+
mask_idc.extend(span_start + i for i in range(length))
|
| 113 |
+
|
| 114 |
+
new_parts = []
|
| 115 |
+
if span_start - s - min_space >= keep_length:
|
| 116 |
+
new_parts.append((s, span_start - min_space + 1))
|
| 117 |
+
if e - span_start - keep_length - min_space > keep_length:
|
| 118 |
+
new_parts.append((span_start + length + min_space, e))
|
| 119 |
+
return new_parts
|
| 120 |
+
|
| 121 |
+
parts = [(0, sz)]
|
| 122 |
+
min_length = min(lengths)
|
| 123 |
+
for length in sorted(lengths, reverse=True):
|
| 124 |
+
lens = np.fromiter(
|
| 125 |
+
(e - s if e - s >= length + min_space else 0 for s, e in parts),
|
| 126 |
+
np.int,
|
| 127 |
+
)
|
| 128 |
+
l_sum = np.sum(lens)
|
| 129 |
+
if l_sum == 0:
|
| 130 |
+
break
|
| 131 |
+
probs = lens / np.sum(lens)
|
| 132 |
+
c = np.random.choice(len(parts), p=probs)
|
| 133 |
+
s, e = parts.pop(c)
|
| 134 |
+
parts.extend(arrange(s, e, length, min_length))
|
| 135 |
+
mask_idc = np.asarray(mask_idc)
|
| 136 |
+
else:
|
| 137 |
+
min_len = min(lengths)
|
| 138 |
+
if sz - min_len <= num_mask:
|
| 139 |
+
min_len = sz - num_mask - 1
|
| 140 |
+
|
| 141 |
+
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False)
|
| 142 |
+
|
| 143 |
+
mask_idc = np.asarray(
|
| 144 |
+
[
|
| 145 |
+
mask_idc[j] + offset
|
| 146 |
+
for j in range(len(mask_idc))
|
| 147 |
+
for offset in range(lengths[j])
|
| 148 |
+
]
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
mask_idcs.append(np.unique(mask_idc[mask_idc < sz]))
|
| 152 |
+
|
| 153 |
+
min_len = min([len(m) for m in mask_idcs])
|
| 154 |
+
for i, mask_idc in enumerate(mask_idcs):
|
| 155 |
+
if len(mask_idc) > min_len:
|
| 156 |
+
mask_idc = np.random.choice(mask_idc, min_len, replace=False)
|
| 157 |
+
mask[i, mask_idc] = True
|
| 158 |
+
|
| 159 |
+
return mask
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
class WavLMConfig:
|
| 163 |
+
def __init__(self, cfg=None):
|
| 164 |
+
self.extractor_mode: str = "default" # mode for feature extractor. default has a single group norm with d groups in the first conv block, whereas layer_norm has layer norms in every block (meant to use with normalize=True)
|
| 165 |
+
self.encoder_layers: int = 12 # num encoder layers in the transformer
|
| 166 |
+
|
| 167 |
+
self.encoder_embed_dim: int = 768 # encoder embedding dimension
|
| 168 |
+
self.encoder_ffn_embed_dim: int = 3072 # encoder embedding dimension for FFN
|
| 169 |
+
self.encoder_attention_heads: int = 12 # num encoder attention heads
|
| 170 |
+
self.activation_fn: str = "gelu" # activation function to use
|
| 171 |
+
|
| 172 |
+
self.layer_norm_first: bool = False # apply layernorm first in the transformer
|
| 173 |
+
self.conv_feature_layers: str = "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2" # string describing convolutional feature extraction layers in form of a python list that contains [(dim, kernel_size, stride), ...]
|
| 174 |
+
self.conv_bias: bool = False # include bias in conv encoder
|
| 175 |
+
self.feature_grad_mult: float = 1.0 # multiply feature extractor var grads by this
|
| 176 |
+
|
| 177 |
+
self.normalize: bool = False # normalize input to have 0 mean and unit variance during training
|
| 178 |
+
|
| 179 |
+
# dropouts
|
| 180 |
+
self.dropout: float = 0.1 # dropout probability for the transformer
|
| 181 |
+
self.attention_dropout: float = 0.1 # dropout probability for attention weights
|
| 182 |
+
self.activation_dropout: float = 0.0 # dropout probability after activation in FFN
|
| 183 |
+
self.encoder_layerdrop: float = 0.0 # probability of dropping a tarnsformer layer
|
| 184 |
+
self.dropout_input: float = 0.0 # dropout to apply to the input (after feat extr)
|
| 185 |
+
self.dropout_features: float = 0.0 # dropout to apply to the features (after feat extr)
|
| 186 |
+
|
| 187 |
+
# masking
|
| 188 |
+
self.mask_length: int = 10 # mask length
|
| 189 |
+
self.mask_prob: float = 0.65 # probability of replacing a token with mask
|
| 190 |
+
self.mask_selection: str = "static" # how to choose mask length
|
| 191 |
+
self.mask_other: float = 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indicesh
|
| 192 |
+
self.no_mask_overlap: bool = False # whether to allow masks to overlap
|
| 193 |
+
self.mask_min_space: int = 1 # min space between spans (if no overlap is enabled)
|
| 194 |
+
|
| 195 |
+
# channel masking
|
| 196 |
+
self.mask_channel_length: int = 10 # length of the mask for features (channels)
|
| 197 |
+
self.mask_channel_prob: float = 0.0 # probability of replacing a feature with 0
|
| 198 |
+
self.mask_channel_selection: str = "static" # how to choose mask length for channel masking
|
| 199 |
+
self.mask_channel_other: float = 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indices
|
| 200 |
+
self.no_mask_channel_overlap: bool = False # whether to allow channel masks to overlap
|
| 201 |
+
self.mask_channel_min_space: int = 1 # min space between spans (if no overlap is enabled)
|
| 202 |
+
|
| 203 |
+
# positional embeddings
|
| 204 |
+
self.conv_pos: int = 128 # number of filters for convolutional positional embeddings
|
| 205 |
+
self.conv_pos_groups: int = 16 # number of groups for convolutional positional embedding
|
| 206 |
+
|
| 207 |
+
# relative position embedding
|
| 208 |
+
self.relative_position_embedding: bool = False # apply relative position embedding
|
| 209 |
+
self.num_buckets: int = 320 # number of buckets for relative position embedding
|
| 210 |
+
self.max_distance: int = 1280 # maximum distance for relative position embedding
|
| 211 |
+
self.gru_rel_pos: bool = False # apply gated relative position embedding
|
| 212 |
+
self.adapter_dim: int = 128
|
| 213 |
+
|
| 214 |
+
if cfg is not None:
|
| 215 |
+
self.update(cfg)
|
| 216 |
+
|
| 217 |
+
def update(self, cfg: dict):
|
| 218 |
+
self.__dict__.update(cfg)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
class WavLM(nn.Module):
|
| 222 |
+
def __init__(
|
| 223 |
+
self,
|
| 224 |
+
cfg: WavLMConfig,
|
| 225 |
+
) -> None:
|
| 226 |
+
super().__init__()
|
| 227 |
+
logger.info(f"WavLM Config: {cfg.__dict__}")
|
| 228 |
+
|
| 229 |
+
self.cfg = cfg
|
| 230 |
+
feature_enc_layers = eval(cfg.conv_feature_layers)
|
| 231 |
+
self.embed = feature_enc_layers[-1][0]
|
| 232 |
+
|
| 233 |
+
self.feature_extractor = ConvFeatureExtractionModel(
|
| 234 |
+
conv_layers=feature_enc_layers,
|
| 235 |
+
dropout=0.0,
|
| 236 |
+
mode=cfg.extractor_mode,
|
| 237 |
+
conv_bias=cfg.conv_bias,
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
self.post_extract_proj = (
|
| 241 |
+
nn.Linear(self.embed, cfg.encoder_embed_dim)
|
| 242 |
+
if self.embed != cfg.encoder_embed_dim
|
| 243 |
+
else None
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
self.mask_prob = cfg.mask_prob
|
| 247 |
+
self.mask_selection = cfg.mask_selection
|
| 248 |
+
self.mask_other = cfg.mask_other
|
| 249 |
+
self.mask_length = cfg.mask_length
|
| 250 |
+
self.no_mask_overlap = cfg.no_mask_overlap
|
| 251 |
+
self.mask_min_space = cfg.mask_min_space
|
| 252 |
+
|
| 253 |
+
self.mask_channel_prob = cfg.mask_channel_prob
|
| 254 |
+
self.mask_channel_selection = cfg.mask_channel_selection
|
| 255 |
+
self.mask_channel_other = cfg.mask_channel_other
|
| 256 |
+
self.mask_channel_length = cfg.mask_channel_length
|
| 257 |
+
self.no_mask_channel_overlap = cfg.no_mask_channel_overlap
|
| 258 |
+
self.mask_channel_min_space = cfg.mask_channel_min_space
|
| 259 |
+
|
| 260 |
+
self.dropout_input = nn.Dropout(cfg.dropout_input)
|
| 261 |
+
self.dropout_features = nn.Dropout(cfg.dropout_features)
|
| 262 |
+
|
| 263 |
+
self.feature_grad_mult = cfg.feature_grad_mult
|
| 264 |
+
|
| 265 |
+
self.encoder = TransformerEncoder(cfg)
|
| 266 |
+
self.layer_norm = LayerNorm(self.embed)
|
| 267 |
+
|
| 268 |
+
def apply_mask(self, x, padding_mask):
|
| 269 |
+
B, T, C = x.shape
|
| 270 |
+
if self.mask_prob > 0:
|
| 271 |
+
mask_indices = compute_mask_indices(
|
| 272 |
+
(B, T),
|
| 273 |
+
padding_mask,
|
| 274 |
+
self.mask_prob,
|
| 275 |
+
self.mask_length,
|
| 276 |
+
self.mask_selection,
|
| 277 |
+
self.mask_other,
|
| 278 |
+
min_masks=2,
|
| 279 |
+
no_overlap=self.no_mask_overlap,
|
| 280 |
+
min_space=self.mask_min_space,
|
| 281 |
+
)
|
| 282 |
+
mask_indices = torch.from_numpy(mask_indices).to(x.device)
|
| 283 |
+
x[mask_indices] = self.mask_emb
|
| 284 |
+
else:
|
| 285 |
+
mask_indices = None
|
| 286 |
+
|
| 287 |
+
if self.mask_channel_prob > 0:
|
| 288 |
+
mask_channel_indices = compute_mask_indices(
|
| 289 |
+
(B, C),
|
| 290 |
+
None,
|
| 291 |
+
self.mask_channel_prob,
|
| 292 |
+
self.mask_channel_length,
|
| 293 |
+
self.mask_channel_selection,
|
| 294 |
+
self.mask_channel_other,
|
| 295 |
+
no_overlap=self.no_mask_channel_overlap,
|
| 296 |
+
min_space=self.mask_channel_min_space,
|
| 297 |
+
)
|
| 298 |
+
mask_channel_indices = (
|
| 299 |
+
torch.from_numpy(mask_channel_indices)
|
| 300 |
+
.to(x.device)
|
| 301 |
+
.unsqueeze(1)
|
| 302 |
+
.expand(-1, T, -1)
|
| 303 |
+
)
|
| 304 |
+
x[mask_channel_indices] = 0
|
| 305 |
+
|
| 306 |
+
return x, mask_indices
|
| 307 |
+
|
| 308 |
+
def forward_padding_mask(
|
| 309 |
+
self, features: torch.Tensor, padding_mask: torch.Tensor,
|
| 310 |
+
) -> torch.Tensor:
|
| 311 |
+
extra = padding_mask.size(1) % features.size(1)
|
| 312 |
+
if extra > 0:
|
| 313 |
+
padding_mask = padding_mask[:, :-extra]
|
| 314 |
+
padding_mask = padding_mask.view(
|
| 315 |
+
padding_mask.size(0), features.size(1), -1
|
| 316 |
+
)
|
| 317 |
+
padding_mask = padding_mask.all(-1)
|
| 318 |
+
return padding_mask
|
| 319 |
+
|
| 320 |
+
def extract_features(
|
| 321 |
+
self,
|
| 322 |
+
source: torch.Tensor,
|
| 323 |
+
padding_mask: Optional[torch.Tensor] = None,
|
| 324 |
+
mask: bool = False,
|
| 325 |
+
ret_conv: bool = False,
|
| 326 |
+
output_layer: Optional[int] = None,
|
| 327 |
+
ret_layer_results: bool = False,
|
| 328 |
+
):
|
| 329 |
+
if self.feature_grad_mult > 0:
|
| 330 |
+
features = self.feature_extractor(source)
|
| 331 |
+
features = features[-1].transpose(1, 2)
|
| 332 |
+
if self.feature_grad_mult != 1.0:
|
| 333 |
+
features = GradMultiply.apply(features, self.feature_grad_mult)
|
| 334 |
+
else:
|
| 335 |
+
with torch.no_grad():
|
| 336 |
+
features = self.feature_extractor(source)
|
| 337 |
+
features = features[-1].transpose(1, 2)
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
cnn_outs = features
|
| 341 |
+
features = self.layer_norm(features)
|
| 342 |
+
|
| 343 |
+
if padding_mask is not None:
|
| 344 |
+
padding_mask = self.forward_padding_mask(features, padding_mask)
|
| 345 |
+
|
| 346 |
+
if self.post_extract_proj is not None:
|
| 347 |
+
features = self.post_extract_proj(features)
|
| 348 |
+
|
| 349 |
+
features = self.dropout_input(features)
|
| 350 |
+
|
| 351 |
+
if mask:
|
| 352 |
+
x, mask_indices = self.apply_mask(
|
| 353 |
+
features, padding_mask
|
| 354 |
+
)
|
| 355 |
+
else:
|
| 356 |
+
x = features
|
| 357 |
+
|
| 358 |
+
# feature: (B, T, D), float
|
| 359 |
+
# target: (B, T), long
|
| 360 |
+
# x: (B, T, D), float
|
| 361 |
+
# padding_mask: (B, T), bool
|
| 362 |
+
# mask_indices: (B, T), bool
|
| 363 |
+
x, layer_results = self.encoder(
|
| 364 |
+
x,
|
| 365 |
+
padding_mask=padding_mask,
|
| 366 |
+
layer=None if output_layer is None else output_layer - 1
|
| 367 |
+
)
|
| 368 |
+
return cnn_outs, layer_results
|
| 369 |
+
# res = {"x": x, "padding_mask": padding_mask, "features": features, "layer_results": layer_results}
|
| 370 |
+
|
| 371 |
+
# feature = res["features"] if ret_conv else res["x"]
|
| 372 |
+
# if ret_layer_results:
|
| 373 |
+
# feature = (feature, res["layer_results"])
|
| 374 |
+
# return feature, res["padding_mask"]
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
class ConvFeatureExtractionModel(nn.Module):
|
| 378 |
+
def __init__(
|
| 379 |
+
self,
|
| 380 |
+
conv_layers: List[Tuple[int, int, int]],
|
| 381 |
+
dropout: float = 0.0,
|
| 382 |
+
mode: str = "default",
|
| 383 |
+
conv_bias: bool = False,
|
| 384 |
+
conv_type: str = "default"
|
| 385 |
+
):
|
| 386 |
+
super().__init__()
|
| 387 |
+
|
| 388 |
+
assert mode in {"default", "layer_norm"}
|
| 389 |
+
|
| 390 |
+
def block(
|
| 391 |
+
n_in,
|
| 392 |
+
n_out,
|
| 393 |
+
k,
|
| 394 |
+
stride,
|
| 395 |
+
is_layer_norm=False,
|
| 396 |
+
is_group_norm=False,
|
| 397 |
+
conv_bias=False,
|
| 398 |
+
):
|
| 399 |
+
def make_conv():
|
| 400 |
+
conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias)
|
| 401 |
+
nn.init.kaiming_normal_(conv.weight)
|
| 402 |
+
return conv
|
| 403 |
+
|
| 404 |
+
assert (
|
| 405 |
+
is_layer_norm and is_group_norm
|
| 406 |
+
) == False, "layer norm and group norm are exclusive"
|
| 407 |
+
|
| 408 |
+
if is_layer_norm:
|
| 409 |
+
return nn.Sequential(
|
| 410 |
+
make_conv(),
|
| 411 |
+
nn.Dropout(p=dropout),
|
| 412 |
+
nn.Sequential(
|
| 413 |
+
TransposeLast(),
|
| 414 |
+
Fp32LayerNorm(dim, elementwise_affine=True),
|
| 415 |
+
TransposeLast(),
|
| 416 |
+
),
|
| 417 |
+
nn.GELU(),
|
| 418 |
+
)
|
| 419 |
+
elif is_group_norm:
|
| 420 |
+
return nn.Sequential(
|
| 421 |
+
make_conv(),
|
| 422 |
+
nn.Dropout(p=dropout),
|
| 423 |
+
Fp32GroupNorm(dim, dim, affine=True),
|
| 424 |
+
nn.GELU(),
|
| 425 |
+
)
|
| 426 |
+
else:
|
| 427 |
+
return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU())
|
| 428 |
+
|
| 429 |
+
self.conv_type = conv_type
|
| 430 |
+
if self.conv_type == "default":
|
| 431 |
+
in_d = 1
|
| 432 |
+
self.conv_layers = nn.ModuleList()
|
| 433 |
+
for i, cl in enumerate(conv_layers):
|
| 434 |
+
assert len(cl) == 3, "invalid conv definition: " + str(cl)
|
| 435 |
+
(dim, k, stride) = cl
|
| 436 |
+
|
| 437 |
+
self.conv_layers.append(
|
| 438 |
+
block(
|
| 439 |
+
in_d,
|
| 440 |
+
dim,
|
| 441 |
+
k,
|
| 442 |
+
stride,
|
| 443 |
+
is_layer_norm=mode == "layer_norm",
|
| 444 |
+
is_group_norm=mode == "default" and i == 0,
|
| 445 |
+
conv_bias=conv_bias,
|
| 446 |
+
)
|
| 447 |
+
)
|
| 448 |
+
in_d = dim
|
| 449 |
+
elif self.conv_type == "conv2d":
|
| 450 |
+
in_d = 1
|
| 451 |
+
self.conv_layers = nn.ModuleList()
|
| 452 |
+
for i, cl in enumerate(conv_layers):
|
| 453 |
+
assert len(cl) == 3
|
| 454 |
+
(dim, k, stride) = cl
|
| 455 |
+
|
| 456 |
+
self.conv_layers.append(
|
| 457 |
+
torch.nn.Conv2d(in_d, dim, k, stride)
|
| 458 |
+
)
|
| 459 |
+
self.conv_layers.append(torch.nn.ReLU())
|
| 460 |
+
in_d = dim
|
| 461 |
+
elif self.conv_type == "custom":
|
| 462 |
+
in_d = 1
|
| 463 |
+
idim = 80
|
| 464 |
+
self.conv_layers = nn.ModuleList()
|
| 465 |
+
for i, cl in enumerate(conv_layers):
|
| 466 |
+
assert len(cl) == 3
|
| 467 |
+
(dim, k, stride) = cl
|
| 468 |
+
self.conv_layers.append(
|
| 469 |
+
torch.nn.Conv2d(in_d, dim, k, stride, padding=1)
|
| 470 |
+
)
|
| 471 |
+
self.conv_layers.append(
|
| 472 |
+
torch.nn.LayerNorm([dim, idim])
|
| 473 |
+
)
|
| 474 |
+
self.conv_layers.append(torch.nn.ReLU())
|
| 475 |
+
in_d = dim
|
| 476 |
+
if (i + 1) % 2 == 0:
|
| 477 |
+
self.conv_layers.append(
|
| 478 |
+
torch.nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
| 479 |
+
)
|
| 480 |
+
idim = int(math.ceil(idim / 2))
|
| 481 |
+
else:
|
| 482 |
+
pass
|
| 483 |
+
def forward(self, x, mask=None):
|
| 484 |
+
|
| 485 |
+
# BxT -> BxCxT
|
| 486 |
+
x_lst = []
|
| 487 |
+
x = x.unsqueeze(1)
|
| 488 |
+
if self.conv_type == "custom":
|
| 489 |
+
for conv in self.conv_layers:
|
| 490 |
+
if isinstance(conv, nn.LayerNorm):
|
| 491 |
+
x = x.transpose(1, 2)
|
| 492 |
+
x = conv(x).transpose(1, 2)
|
| 493 |
+
else:
|
| 494 |
+
x = conv(x)
|
| 495 |
+
x = x.transpose(2, 3).contiguous()
|
| 496 |
+
x = x.view(x.size(0), -1, x.size(-1))
|
| 497 |
+
else:
|
| 498 |
+
for conv in self.conv_layers:
|
| 499 |
+
x = conv(x)
|
| 500 |
+
x_lst.append(x)
|
| 501 |
+
if self.conv_type == "conv2d":
|
| 502 |
+
b, c, t, f = x.size()
|
| 503 |
+
x = x.transpose(2, 3).contiguous().view(b, c * f, t)
|
| 504 |
+
return x_lst
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
class TransformerEncoder(nn.Module):
|
| 508 |
+
def __init__(self, args):
|
| 509 |
+
super().__init__()
|
| 510 |
+
|
| 511 |
+
self.dropout = args.dropout
|
| 512 |
+
self.embedding_dim = args.encoder_embed_dim
|
| 513 |
+
|
| 514 |
+
self.pos_conv = nn.Conv1d(
|
| 515 |
+
self.embedding_dim,
|
| 516 |
+
self.embedding_dim,
|
| 517 |
+
kernel_size=args.conv_pos,
|
| 518 |
+
padding=args.conv_pos // 2,
|
| 519 |
+
groups=args.conv_pos_groups,
|
| 520 |
+
)
|
| 521 |
+
dropout = 0
|
| 522 |
+
std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim))
|
| 523 |
+
nn.init.normal_(self.pos_conv.weight, mean=0, std=std)
|
| 524 |
+
nn.init.constant_(self.pos_conv.bias, 0)
|
| 525 |
+
|
| 526 |
+
self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2)
|
| 527 |
+
self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU())
|
| 528 |
+
|
| 529 |
+
if hasattr(args, "relative_position_embedding"):
|
| 530 |
+
self.relative_position_embedding = args.relative_position_embedding
|
| 531 |
+
self.num_buckets = args.num_buckets
|
| 532 |
+
self.max_distance = args.max_distance
|
| 533 |
+
else:
|
| 534 |
+
self.relative_position_embedding = False
|
| 535 |
+
self.num_buckets = 0
|
| 536 |
+
self.max_distance = 0
|
| 537 |
+
|
| 538 |
+
self.layers = nn.ModuleList(
|
| 539 |
+
[
|
| 540 |
+
TransformerSentenceEncoderLayer(
|
| 541 |
+
embedding_dim=self.embedding_dim,
|
| 542 |
+
ffn_embedding_dim=args.encoder_ffn_embed_dim,
|
| 543 |
+
num_attention_heads=args.encoder_attention_heads,
|
| 544 |
+
dropout=self.dropout,
|
| 545 |
+
attention_dropout=args.attention_dropout,
|
| 546 |
+
activation_dropout=args.activation_dropout,
|
| 547 |
+
activation_fn=args.activation_fn,
|
| 548 |
+
layer_norm_first=args.layer_norm_first,
|
| 549 |
+
has_relative_attention_bias=(self.relative_position_embedding and i == 0),
|
| 550 |
+
num_buckets=self.num_buckets,
|
| 551 |
+
max_distance=self.max_distance,
|
| 552 |
+
gru_rel_pos=args.gru_rel_pos,
|
| 553 |
+
adapter_dim=args.adapter_dim,
|
| 554 |
+
)
|
| 555 |
+
for i in range(args.encoder_layers)
|
| 556 |
+
]
|
| 557 |
+
)
|
| 558 |
+
|
| 559 |
+
self.layer_norm_first = args.layer_norm_first
|
| 560 |
+
self.layer_norm = LayerNorm(self.embedding_dim)
|
| 561 |
+
self.layerdrop = args.encoder_layerdrop
|
| 562 |
+
|
| 563 |
+
def __prepare_scriptable__(self):
|
| 564 |
+
for hook in self.pos_conv._forward_pre_hooks.values():
|
| 565 |
+
# The hook we want to remove is an instance of WeightNorm class, so
|
| 566 |
+
# normally we would do `if isinstance(...)` but this class is not accessible
|
| 567 |
+
# because of shadowing, so we check the module name directly.
|
| 568 |
+
# https://github.com/pytorch/pytorch/blob/be0ca00c5ce260eb5bcec3237357f7a30cc08983/torch/nn/utils/__init__.py#L3
|
| 569 |
+
if hook.__module__ == "torch.nn.utils.weight_norm" and hook.__class__.__name__ == "WeightNorm":
|
| 570 |
+
_LG.warning("Removing weight_norm from %s", self.__class__.__name__)
|
| 571 |
+
torch.nn.utils.remove_weight_norm(self.pos_conv)
|
| 572 |
+
return self
|
| 573 |
+
|
| 574 |
+
def forward(self, x, padding_mask=None, streaming_mask=None, layer=None):
|
| 575 |
+
x, layer_results = self.extract_features(x, padding_mask, streaming_mask, layer)
|
| 576 |
+
|
| 577 |
+
if self.layer_norm_first and layer is None:
|
| 578 |
+
x = self.layer_norm(x)
|
| 579 |
+
|
| 580 |
+
return x, layer_results
|
| 581 |
+
|
| 582 |
+
def extract_features(self, x, padding_mask=None, streaming_mask=None, tgt_layer=None):
|
| 583 |
+
|
| 584 |
+
if padding_mask is not None:
|
| 585 |
+
x[padding_mask] = 0
|
| 586 |
+
|
| 587 |
+
x_conv = self.pos_conv(x.transpose(1, 2))
|
| 588 |
+
x_conv = x_conv.transpose(1, 2)
|
| 589 |
+
x = x + x_conv
|
| 590 |
+
|
| 591 |
+
if not self.layer_norm_first:
|
| 592 |
+
x = self.layer_norm(x)
|
| 593 |
+
|
| 594 |
+
x = F.dropout(x, p=self.dropout, training=self.training)
|
| 595 |
+
|
| 596 |
+
# B x T x C -> T x B x C
|
| 597 |
+
x = x.transpose(0, 1)
|
| 598 |
+
|
| 599 |
+
layer_results = []
|
| 600 |
+
z = None
|
| 601 |
+
if tgt_layer is not None:
|
| 602 |
+
layer_results.append((x, z))
|
| 603 |
+
r = None
|
| 604 |
+
pos_bias = None
|
| 605 |
+
for i, layer in enumerate(self.layers):
|
| 606 |
+
# dropout_probability = np.random.random()
|
| 607 |
+
if not self.training or (torch.rand(1).item() > self.layerdrop):
|
| 608 |
+
x, z, pos_bias = layer(x, self_attn_padding_mask=padding_mask, need_weights=False,
|
| 609 |
+
self_attn_mask=streaming_mask, pos_bias=pos_bias)
|
| 610 |
+
if tgt_layer is not None:
|
| 611 |
+
layer_results.append((x, z))
|
| 612 |
+
if i == tgt_layer:
|
| 613 |
+
r = x
|
| 614 |
+
break
|
| 615 |
+
|
| 616 |
+
if r is not None:
|
| 617 |
+
x = r
|
| 618 |
+
|
| 619 |
+
# T x B x C -> B x T x C
|
| 620 |
+
x = x.transpose(0, 1)
|
| 621 |
+
|
| 622 |
+
return x, layer_results
|
| 623 |
+
|
| 624 |
+
|
| 625 |
+
class TransformerSentenceEncoderLayer(nn.Module):
|
| 626 |
+
"""
|
| 627 |
+
Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained
|
| 628 |
+
models.
|
| 629 |
+
"""
|
| 630 |
+
|
| 631 |
+
def __init__(
|
| 632 |
+
self,
|
| 633 |
+
embedding_dim: float = 768,
|
| 634 |
+
ffn_embedding_dim: float = 3072,
|
| 635 |
+
num_attention_heads: float = 8,
|
| 636 |
+
dropout: float = 0.1,
|
| 637 |
+
attention_dropout: float = 0.1,
|
| 638 |
+
activation_dropout: float = 0.1,
|
| 639 |
+
activation_fn: str = "relu",
|
| 640 |
+
layer_norm_first: bool = False,
|
| 641 |
+
has_relative_attention_bias: bool = False,
|
| 642 |
+
num_buckets: int = 0,
|
| 643 |
+
max_distance: int = 0,
|
| 644 |
+
rescale_init: bool = False,
|
| 645 |
+
gru_rel_pos: bool = False,
|
| 646 |
+
adapter_dim: int = 128,
|
| 647 |
+
) -> None:
|
| 648 |
+
|
| 649 |
+
super().__init__()
|
| 650 |
+
# Initialize parameters
|
| 651 |
+
self.embedding_dim = embedding_dim
|
| 652 |
+
self.dropout = dropout
|
| 653 |
+
self.activation_dropout = activation_dropout
|
| 654 |
+
|
| 655 |
+
# Initialize blocks
|
| 656 |
+
self.activation_name = activation_fn
|
| 657 |
+
self.activation_fn = get_activation_fn(activation_fn)
|
| 658 |
+
self.self_attn = MultiheadAttention(
|
| 659 |
+
self.embedding_dim,
|
| 660 |
+
num_attention_heads,
|
| 661 |
+
dropout=attention_dropout,
|
| 662 |
+
self_attention=True,
|
| 663 |
+
has_relative_attention_bias=has_relative_attention_bias,
|
| 664 |
+
num_buckets=num_buckets,
|
| 665 |
+
max_distance=max_distance,
|
| 666 |
+
rescale_init=rescale_init,
|
| 667 |
+
gru_rel_pos=gru_rel_pos,
|
| 668 |
+
)
|
| 669 |
+
|
| 670 |
+
self.dropout1 = nn.Dropout(dropout)
|
| 671 |
+
self.dropout2 = nn.Dropout(self.activation_dropout)
|
| 672 |
+
self.dropout3 = nn.Dropout(dropout)
|
| 673 |
+
|
| 674 |
+
self.layer_norm_first = layer_norm_first
|
| 675 |
+
|
| 676 |
+
# layer norm associated with the self attention layer
|
| 677 |
+
self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
|
| 678 |
+
|
| 679 |
+
if self.activation_name == "glu":
|
| 680 |
+
self.fc1 = GLU_Linear(self.embedding_dim, ffn_embedding_dim, "swish")
|
| 681 |
+
else:
|
| 682 |
+
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
|
| 683 |
+
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
|
| 684 |
+
|
| 685 |
+
import torchaudio.functional as AudioF
|
| 686 |
+
|
| 687 |
+
|
| 688 |
+
# layer norm associated with the position wise feed-forward NN
|
| 689 |
+
self.final_layer_norm = LayerNorm(self.embedding_dim)
|
| 690 |
+
|
| 691 |
+
def forward(
|
| 692 |
+
self,
|
| 693 |
+
x: torch.Tensor,
|
| 694 |
+
self_attn_mask: torch.Tensor = None,
|
| 695 |
+
self_attn_padding_mask: torch.Tensor = None,
|
| 696 |
+
need_weights: bool = False,
|
| 697 |
+
pos_bias=None
|
| 698 |
+
):
|
| 699 |
+
"""
|
| 700 |
+
LayerNorm is applied either before or after the self-attention/ffn
|
| 701 |
+
modules similar to the original Transformer imlementation.
|
| 702 |
+
"""
|
| 703 |
+
residual = x
|
| 704 |
+
|
| 705 |
+
if self.layer_norm_first:
|
| 706 |
+
x = self.self_attn_layer_norm(x)
|
| 707 |
+
x, attn, pos_bias = self.self_attn(
|
| 708 |
+
query=x,
|
| 709 |
+
key=x,
|
| 710 |
+
value=x,
|
| 711 |
+
key_padding_mask=self_attn_padding_mask,
|
| 712 |
+
need_weights=False,
|
| 713 |
+
attn_mask=self_attn_mask,
|
| 714 |
+
position_bias=pos_bias
|
| 715 |
+
)
|
| 716 |
+
x = self.dropout1(x)
|
| 717 |
+
x = residual + x
|
| 718 |
+
|
| 719 |
+
residual = x
|
| 720 |
+
|
| 721 |
+
x = self.final_layer_norm(x)
|
| 722 |
+
if self.activation_name == "glu":
|
| 723 |
+
x = self.fc1(x)
|
| 724 |
+
else:
|
| 725 |
+
x = self.activation_fn(self.fc1(x))
|
| 726 |
+
x = self.dropout2(x)
|
| 727 |
+
x = self.fc2(x)
|
| 728 |
+
x = self.dropout3(x)
|
| 729 |
+
x = residual + x
|
| 730 |
+
else:
|
| 731 |
+
|
| 732 |
+
|
| 733 |
+
x, attn, pos_bias = self.self_attn(
|
| 734 |
+
query=x,
|
| 735 |
+
key=x,
|
| 736 |
+
value=x,
|
| 737 |
+
key_padding_mask=self_attn_padding_mask,
|
| 738 |
+
need_weights=need_weights,
|
| 739 |
+
attn_mask=self_attn_mask,
|
| 740 |
+
position_bias=pos_bias
|
| 741 |
+
)
|
| 742 |
+
|
| 743 |
+
x = self.dropout1(x)
|
| 744 |
+
x = residual + x
|
| 745 |
+
|
| 746 |
+
x = self.self_attn_layer_norm(x)
|
| 747 |
+
# MAM
|
| 748 |
+
|
| 749 |
+
residual = x
|
| 750 |
+
if self.activation_name == "glu":
|
| 751 |
+
x = self.fc1(x)
|
| 752 |
+
else:
|
| 753 |
+
x = self.activation_fn(self.fc1(x))
|
| 754 |
+
x = self.dropout2(x)
|
| 755 |
+
x = self.fc2(x)
|
| 756 |
+
x = self.dropout3(x)
|
| 757 |
+
x = residual + x
|
| 758 |
+
|
| 759 |
+
|
| 760 |
+
x = self.final_layer_norm(x)
|
| 761 |
+
|
| 762 |
+
return x, attn, pos_bias
|
SSL_WavLM/__init__.py
ADDED
|
File without changes
|
SSL_WavLM/__pycache__/WavLM.cpython-310.pyc
ADDED
|
Binary file (17.2 kB). View file
|
|
|
SSL_WavLM/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (200 Bytes). View file
|
|
|
SSL_WavLM/__pycache__/modules.cpython-310.pyc
ADDED
|
Binary file (19.3 kB). View file
|
|
|
SSL_WavLM/model_convert.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7b7dfae027dabfae1fc2efd919a3cebe8f12a22eb6724e2856aaefd5d06c172d
|
| 3 |
+
size 401044050
|
SSL_WavLM/modules.py
ADDED
|
@@ -0,0 +1,827 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing (https://arxiv.org/abs/2110.13900.pdf)
|
| 3 |
+
# Github source: https://github.com/microsoft/unilm/tree/master/wavlm
|
| 4 |
+
# Copyright (c) 2021 Microsoft
|
| 5 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 6 |
+
# Based on fairseq code bases
|
| 7 |
+
# https://github.com/pytorch/fairseq
|
| 8 |
+
# --------------------------------------------------------
|
| 9 |
+
|
| 10 |
+
import math
|
| 11 |
+
import warnings
|
| 12 |
+
from typing import Dict, Optional, Tuple
|
| 13 |
+
import torch
|
| 14 |
+
from torch import Tensor, nn
|
| 15 |
+
from torch.nn import Parameter
|
| 16 |
+
import torch.nn.functional as F
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class TransposeLast(nn.Module):
|
| 20 |
+
def __init__(self, deconstruct_idx=None):
|
| 21 |
+
super().__init__()
|
| 22 |
+
self.deconstruct_idx = deconstruct_idx
|
| 23 |
+
|
| 24 |
+
def forward(self, x):
|
| 25 |
+
if self.deconstruct_idx is not None:
|
| 26 |
+
x = x[self.deconstruct_idx]
|
| 27 |
+
return x.transpose(-2, -1)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class Fp32LayerNorm(nn.LayerNorm):
|
| 31 |
+
def __init__(self, *args, **kwargs):
|
| 32 |
+
super().__init__(*args, **kwargs)
|
| 33 |
+
|
| 34 |
+
def forward(self, input):
|
| 35 |
+
output = F.layer_norm(
|
| 36 |
+
input.float(),
|
| 37 |
+
self.normalized_shape,
|
| 38 |
+
self.weight.float() if self.weight is not None else None,
|
| 39 |
+
self.bias.float() if self.bias is not None else None,
|
| 40 |
+
self.eps,
|
| 41 |
+
)
|
| 42 |
+
return output.type_as(input)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class Fp32GroupNorm(nn.GroupNorm):
|
| 46 |
+
def __init__(self, *args, **kwargs):
|
| 47 |
+
super().__init__(*args, **kwargs)
|
| 48 |
+
|
| 49 |
+
def forward(self, input):
|
| 50 |
+
output = F.group_norm(
|
| 51 |
+
input.float(),
|
| 52 |
+
self.num_groups,
|
| 53 |
+
self.weight.float() if self.weight is not None else None,
|
| 54 |
+
self.bias.float() if self.bias is not None else None,
|
| 55 |
+
self.eps,
|
| 56 |
+
)
|
| 57 |
+
return output.type_as(input)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class GradMultiply(torch.autograd.Function):
|
| 61 |
+
@staticmethod
|
| 62 |
+
def forward(ctx, x, scale):
|
| 63 |
+
ctx.scale = scale
|
| 64 |
+
res = x.new(x)
|
| 65 |
+
return res
|
| 66 |
+
|
| 67 |
+
@staticmethod
|
| 68 |
+
def backward(ctx, grad):
|
| 69 |
+
return grad * ctx.scale, None
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class SamePad(nn.Module):
|
| 73 |
+
def __init__(self, kernel_size, causal=False):
|
| 74 |
+
super().__init__()
|
| 75 |
+
if causal:
|
| 76 |
+
self.remove = kernel_size - 1
|
| 77 |
+
else:
|
| 78 |
+
self.remove = 1 if kernel_size % 2 == 0 else 0
|
| 79 |
+
|
| 80 |
+
def forward(self, x):
|
| 81 |
+
if self.remove > 0:
|
| 82 |
+
x = x[:, :, : -self.remove]
|
| 83 |
+
return x
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class Swish(nn.Module):
|
| 87 |
+
"""Swish function
|
| 88 |
+
"""
|
| 89 |
+
|
| 90 |
+
def __init__(self):
|
| 91 |
+
"""Construct an MultiHeadedAttention object."""
|
| 92 |
+
super(Swish, self).__init__()
|
| 93 |
+
self.act = torch.nn.Sigmoid()
|
| 94 |
+
|
| 95 |
+
def forward(self, x):
|
| 96 |
+
return x * self.act(x)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class GLU_Linear(nn.Module):
|
| 100 |
+
def __init__(self, input_dim, output_dim, glu_type="sigmoid", bias_in_glu=True):
|
| 101 |
+
super(GLU_Linear, self).__init__()
|
| 102 |
+
|
| 103 |
+
self.glu_type = glu_type
|
| 104 |
+
self.output_dim = output_dim
|
| 105 |
+
|
| 106 |
+
if glu_type == "sigmoid":
|
| 107 |
+
self.glu_act = torch.nn.Sigmoid()
|
| 108 |
+
elif glu_type == "swish":
|
| 109 |
+
self.glu_act = Swish()
|
| 110 |
+
elif glu_type == "relu":
|
| 111 |
+
self.glu_act = torch.nn.ReLU()
|
| 112 |
+
elif glu_type == "gelu":
|
| 113 |
+
self.glu_act = torch.nn.GELU()
|
| 114 |
+
|
| 115 |
+
if bias_in_glu:
|
| 116 |
+
self.linear = nn.Linear(input_dim, output_dim * 2, True)
|
| 117 |
+
else:
|
| 118 |
+
self.linear = nn.Linear(input_dim, output_dim * 2, False)
|
| 119 |
+
|
| 120 |
+
def forward(self, x):
|
| 121 |
+
# to be consistent with GLU_Linear, we assume the input always has the #channel (#dim) in the last dimension of the tensor, so need to switch the dimension first for 1D-Conv case
|
| 122 |
+
x = self.linear(x)
|
| 123 |
+
|
| 124 |
+
if self.glu_type == "bilinear":
|
| 125 |
+
x = (x[:, :, 0:self.output_dim] * x[:, :, self.output_dim:self.output_dim * 2])
|
| 126 |
+
else:
|
| 127 |
+
x = (x[:, :, 0:self.output_dim] * self.glu_act(x[:, :, self.output_dim:self.output_dim * 2]))
|
| 128 |
+
|
| 129 |
+
return x
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def gelu_accurate(x):
|
| 133 |
+
if not hasattr(gelu_accurate, "_a"):
|
| 134 |
+
gelu_accurate._a = math.sqrt(2 / math.pi)
|
| 135 |
+
return (
|
| 136 |
+
0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3))))
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def gelu(x: torch.Tensor) -> torch.Tensor:
|
| 141 |
+
return torch.nn.functional.gelu(x.float()).type_as(x)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def get_activation_fn(activation: str):
|
| 145 |
+
"""Returns the activation function corresponding to `activation`"""
|
| 146 |
+
|
| 147 |
+
if activation == "relu":
|
| 148 |
+
return F.relu
|
| 149 |
+
elif activation == "gelu":
|
| 150 |
+
return gelu
|
| 151 |
+
elif activation == "gelu_fast":
|
| 152 |
+
warnings.warn(
|
| 153 |
+
"--activation-fn=gelu_fast has been renamed to gelu_accurate"
|
| 154 |
+
)
|
| 155 |
+
return gelu_accurate
|
| 156 |
+
elif activation == "gelu_accurate":
|
| 157 |
+
return gelu_accurate
|
| 158 |
+
elif activation == "tanh":
|
| 159 |
+
return torch.tanh
|
| 160 |
+
elif activation == "linear":
|
| 161 |
+
return lambda x: x
|
| 162 |
+
elif activation == "glu":
|
| 163 |
+
return lambda x: x
|
| 164 |
+
else:
|
| 165 |
+
raise RuntimeError("--activation-fn {} not supported".format(activation))
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def init_bert_params(module):
|
| 169 |
+
"""
|
| 170 |
+
Initialize the weights specific to the BERT Model.
|
| 171 |
+
This overrides the default initializations depending on the specified arguments.
|
| 172 |
+
1. If normal_init_linear_weights is set then weights of linear
|
| 173 |
+
layer will be initialized using the normal distribution and
|
| 174 |
+
bais will be set to the specified value.
|
| 175 |
+
2. If normal_init_embed_weights is set then weights of embedding
|
| 176 |
+
layer will be initialized using the normal distribution.
|
| 177 |
+
3. If normal_init_proj_weights is set then weights of
|
| 178 |
+
in_project_weight for MultiHeadAttention initialized using
|
| 179 |
+
the normal distribution (to be validated).
|
| 180 |
+
"""
|
| 181 |
+
|
| 182 |
+
def normal_(data):
|
| 183 |
+
# with FSDP, module params will be on CUDA, so we cast them back to CPU
|
| 184 |
+
# so that the RNG is consistent with and without FSDP
|
| 185 |
+
data.copy_(
|
| 186 |
+
data.cpu().normal_(mean=0.0, std=0.02).to(data.device)
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
if isinstance(module, nn.Linear):
|
| 190 |
+
normal_(module.weight.data)
|
| 191 |
+
if module.bias is not None:
|
| 192 |
+
module.bias.data.zero_()
|
| 193 |
+
if isinstance(module, nn.Embedding):
|
| 194 |
+
normal_(module.weight.data)
|
| 195 |
+
if module.padding_idx is not None:
|
| 196 |
+
module.weight.data[module.padding_idx].zero_()
|
| 197 |
+
if isinstance(module, MultiheadAttention):
|
| 198 |
+
normal_(module.q_proj.weight.data)
|
| 199 |
+
normal_(module.k_proj.weight.data)
|
| 200 |
+
normal_(module.v_proj.weight.data)
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def quant_noise(module, p, block_size):
|
| 204 |
+
"""
|
| 205 |
+
Wraps modules and applies quantization noise to the weights for
|
| 206 |
+
subsequent quantization with Iterative Product Quantization as
|
| 207 |
+
described in "Training with Quantization Noise for Extreme Model Compression"
|
| 208 |
+
|
| 209 |
+
Args:
|
| 210 |
+
- module: nn.Module
|
| 211 |
+
- p: amount of Quantization Noise
|
| 212 |
+
- block_size: size of the blocks for subsequent quantization with iPQ
|
| 213 |
+
|
| 214 |
+
Remarks:
|
| 215 |
+
- Module weights must have the right sizes wrt the block size
|
| 216 |
+
- Only Linear, Embedding and Conv2d modules are supported for the moment
|
| 217 |
+
- For more detail on how to quantize by blocks with convolutional weights,
|
| 218 |
+
see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks"
|
| 219 |
+
- We implement the simplest form of noise here as stated in the paper
|
| 220 |
+
which consists in randomly dropping blocks
|
| 221 |
+
"""
|
| 222 |
+
|
| 223 |
+
# if no quantization noise, don't register hook
|
| 224 |
+
if p <= 0:
|
| 225 |
+
return module
|
| 226 |
+
|
| 227 |
+
# supported modules
|
| 228 |
+
assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d))
|
| 229 |
+
|
| 230 |
+
# test whether module.weight has the right sizes wrt block_size
|
| 231 |
+
is_conv = module.weight.ndim == 4
|
| 232 |
+
|
| 233 |
+
# 2D matrix
|
| 234 |
+
if not is_conv:
|
| 235 |
+
assert (
|
| 236 |
+
module.weight.size(1) % block_size == 0
|
| 237 |
+
), "Input features must be a multiple of block sizes"
|
| 238 |
+
|
| 239 |
+
# 4D matrix
|
| 240 |
+
else:
|
| 241 |
+
# 1x1 convolutions
|
| 242 |
+
if module.kernel_size == (1, 1):
|
| 243 |
+
assert (
|
| 244 |
+
module.in_channels % block_size == 0
|
| 245 |
+
), "Input channels must be a multiple of block sizes"
|
| 246 |
+
# regular convolutions
|
| 247 |
+
else:
|
| 248 |
+
k = module.kernel_size[0] * module.kernel_size[1]
|
| 249 |
+
assert k % block_size == 0, "Kernel size must be a multiple of block size"
|
| 250 |
+
|
| 251 |
+
def _forward_pre_hook(mod, input):
|
| 252 |
+
# no noise for evaluation
|
| 253 |
+
if mod.training:
|
| 254 |
+
if not is_conv:
|
| 255 |
+
# gather weight and sizes
|
| 256 |
+
weight = mod.weight
|
| 257 |
+
in_features = weight.size(1)
|
| 258 |
+
out_features = weight.size(0)
|
| 259 |
+
|
| 260 |
+
# split weight matrix into blocks and randomly drop selected blocks
|
| 261 |
+
mask = torch.zeros(
|
| 262 |
+
in_features // block_size * out_features, device=weight.device
|
| 263 |
+
)
|
| 264 |
+
mask.bernoulli_(p)
|
| 265 |
+
mask = mask.repeat_interleave(block_size, -1).view(-1, in_features)
|
| 266 |
+
|
| 267 |
+
else:
|
| 268 |
+
# gather weight and sizes
|
| 269 |
+
weight = mod.weight
|
| 270 |
+
in_channels = mod.in_channels
|
| 271 |
+
out_channels = mod.out_channels
|
| 272 |
+
|
| 273 |
+
# split weight matrix into blocks and randomly drop selected blocks
|
| 274 |
+
if mod.kernel_size == (1, 1):
|
| 275 |
+
mask = torch.zeros(
|
| 276 |
+
int(in_channels // block_size * out_channels),
|
| 277 |
+
device=weight.device,
|
| 278 |
+
)
|
| 279 |
+
mask.bernoulli_(p)
|
| 280 |
+
mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels)
|
| 281 |
+
else:
|
| 282 |
+
mask = torch.zeros(
|
| 283 |
+
weight.size(0), weight.size(1), device=weight.device
|
| 284 |
+
)
|
| 285 |
+
mask.bernoulli_(p)
|
| 286 |
+
mask = (
|
| 287 |
+
mask.unsqueeze(2)
|
| 288 |
+
.unsqueeze(3)
|
| 289 |
+
.repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1])
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
# scale weights and apply mask
|
| 293 |
+
mask = mask.to(
|
| 294 |
+
torch.bool
|
| 295 |
+
) # x.bool() is not currently supported in TorchScript
|
| 296 |
+
s = 1 / (1 - p)
|
| 297 |
+
mod.weight.data = s * weight.masked_fill(mask, 0)
|
| 298 |
+
|
| 299 |
+
module.register_forward_pre_hook(_forward_pre_hook)
|
| 300 |
+
return module
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
class MultiheadAttention(nn.Module):
|
| 304 |
+
"""Multi-headed attention.
|
| 305 |
+
|
| 306 |
+
See "Attention Is All You Need" for more details.
|
| 307 |
+
"""
|
| 308 |
+
|
| 309 |
+
def __init__(
|
| 310 |
+
self,
|
| 311 |
+
embed_dim,
|
| 312 |
+
num_heads,
|
| 313 |
+
kdim=None,
|
| 314 |
+
vdim=None,
|
| 315 |
+
dropout=0.0,
|
| 316 |
+
bias=True,
|
| 317 |
+
add_bias_kv=False,
|
| 318 |
+
add_zero_attn=False,
|
| 319 |
+
self_attention=False,
|
| 320 |
+
encoder_decoder_attention=False,
|
| 321 |
+
q_noise=0.0,
|
| 322 |
+
qn_block_size=8,
|
| 323 |
+
has_relative_attention_bias=False,
|
| 324 |
+
num_buckets=32,
|
| 325 |
+
max_distance=128,
|
| 326 |
+
gru_rel_pos=False,
|
| 327 |
+
rescale_init=False,
|
| 328 |
+
):
|
| 329 |
+
super().__init__()
|
| 330 |
+
self.embed_dim = embed_dim
|
| 331 |
+
self.kdim = kdim if kdim is not None else embed_dim
|
| 332 |
+
self.vdim = vdim if vdim is not None else embed_dim
|
| 333 |
+
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
| 334 |
+
|
| 335 |
+
self.num_heads = num_heads
|
| 336 |
+
self.dropout_module = nn.Dropout(dropout)
|
| 337 |
+
|
| 338 |
+
self.has_relative_attention_bias = has_relative_attention_bias
|
| 339 |
+
self.num_buckets = num_buckets
|
| 340 |
+
self.max_distance = max_distance
|
| 341 |
+
if self.has_relative_attention_bias:
|
| 342 |
+
self.relative_attention_bias = nn.Embedding(num_buckets, num_heads)
|
| 343 |
+
|
| 344 |
+
self.head_dim = embed_dim // num_heads
|
| 345 |
+
self.q_head_dim = self.head_dim
|
| 346 |
+
self.k_head_dim = self.head_dim
|
| 347 |
+
assert (
|
| 348 |
+
self.head_dim * num_heads == self.embed_dim
|
| 349 |
+
), "embed_dim must be divisible by num_heads"
|
| 350 |
+
self.scaling = self.head_dim ** -0.5
|
| 351 |
+
|
| 352 |
+
self.self_attention = self_attention
|
| 353 |
+
self.encoder_decoder_attention = encoder_decoder_attention
|
| 354 |
+
|
| 355 |
+
assert not self.self_attention or self.qkv_same_dim, (
|
| 356 |
+
"Self-attention requires query, key and " "value to be of the same size"
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
k_bias = True
|
| 360 |
+
if rescale_init:
|
| 361 |
+
k_bias = False
|
| 362 |
+
|
| 363 |
+
k_embed_dim = embed_dim
|
| 364 |
+
q_embed_dim = embed_dim
|
| 365 |
+
|
| 366 |
+
self.k_proj = quant_noise(
|
| 367 |
+
nn.Linear(self.kdim, k_embed_dim, bias=k_bias), q_noise, qn_block_size
|
| 368 |
+
)
|
| 369 |
+
self.v_proj = quant_noise(
|
| 370 |
+
nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size
|
| 371 |
+
)
|
| 372 |
+
self.q_proj = quant_noise(
|
| 373 |
+
nn.Linear(embed_dim, q_embed_dim, bias=bias), q_noise, qn_block_size
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
self.out_proj = quant_noise(
|
| 377 |
+
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
if add_bias_kv:
|
| 381 |
+
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
|
| 382 |
+
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
|
| 383 |
+
else:
|
| 384 |
+
self.bias_k = self.bias_v = None
|
| 385 |
+
|
| 386 |
+
self.add_zero_attn = add_zero_attn
|
| 387 |
+
|
| 388 |
+
self.gru_rel_pos = gru_rel_pos
|
| 389 |
+
if self.gru_rel_pos:
|
| 390 |
+
self.grep_linear = nn.Linear(self.q_head_dim, 8)
|
| 391 |
+
self.grep_a = nn.Parameter(torch.ones(1, num_heads, 1, 1))
|
| 392 |
+
|
| 393 |
+
self.reset_parameters()
|
| 394 |
+
|
| 395 |
+
def reset_parameters(self):
|
| 396 |
+
if self.qkv_same_dim:
|
| 397 |
+
# Empirically observed the convergence to be much better with
|
| 398 |
+
# the scaled initialization
|
| 399 |
+
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
|
| 400 |
+
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
|
| 401 |
+
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
|
| 402 |
+
else:
|
| 403 |
+
nn.init.xavier_uniform_(self.k_proj.weight)
|
| 404 |
+
nn.init.xavier_uniform_(self.v_proj.weight)
|
| 405 |
+
nn.init.xavier_uniform_(self.q_proj.weight)
|
| 406 |
+
|
| 407 |
+
nn.init.xavier_uniform_(self.out_proj.weight)
|
| 408 |
+
if self.out_proj.bias is not None:
|
| 409 |
+
nn.init.constant_(self.out_proj.bias, 0.0)
|
| 410 |
+
if self.bias_k is not None:
|
| 411 |
+
nn.init.xavier_normal_(self.bias_k)
|
| 412 |
+
if self.bias_v is not None:
|
| 413 |
+
nn.init.xavier_normal_(self.bias_v)
|
| 414 |
+
if self.has_relative_attention_bias:
|
| 415 |
+
nn.init.xavier_normal_(self.relative_attention_bias.weight)
|
| 416 |
+
|
| 417 |
+
def _relative_positions_bucket(self, relative_positions, bidirectional=True):
|
| 418 |
+
num_buckets = self.num_buckets
|
| 419 |
+
max_distance = self.max_distance
|
| 420 |
+
relative_buckets = 0
|
| 421 |
+
|
| 422 |
+
if bidirectional:
|
| 423 |
+
num_buckets = num_buckets // 2
|
| 424 |
+
relative_buckets += (relative_positions > 0).to(torch.long) * num_buckets
|
| 425 |
+
relative_positions = torch.abs(relative_positions)
|
| 426 |
+
else:
|
| 427 |
+
relative_positions = -torch.min(relative_positions, torch.zeros_like(relative_positions))
|
| 428 |
+
|
| 429 |
+
max_exact = num_buckets // 2
|
| 430 |
+
is_small = relative_positions < max_exact
|
| 431 |
+
|
| 432 |
+
relative_postion_if_large = max_exact + (
|
| 433 |
+
torch.log(relative_positions.float() / max_exact)
|
| 434 |
+
/ math.log(max_distance / max_exact)
|
| 435 |
+
* (num_buckets - max_exact)
|
| 436 |
+
).to(torch.long)
|
| 437 |
+
relative_postion_if_large = torch.min(
|
| 438 |
+
relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1)
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
relative_buckets += torch.where(is_small, relative_positions, relative_postion_if_large)
|
| 442 |
+
return relative_buckets
|
| 443 |
+
|
| 444 |
+
def compute_bias(self, query_length, key_length):
|
| 445 |
+
context_position = torch.arange(query_length, dtype=torch.long)[:, None]
|
| 446 |
+
memory_position = torch.arange(key_length, dtype=torch.long)[None, :]
|
| 447 |
+
relative_position = memory_position - context_position
|
| 448 |
+
relative_position_bucket = self._relative_positions_bucket(
|
| 449 |
+
relative_position,
|
| 450 |
+
bidirectional=True
|
| 451 |
+
)
|
| 452 |
+
relative_position_bucket = relative_position_bucket.to(self.relative_attention_bias.weight.device)
|
| 453 |
+
values = self.relative_attention_bias(relative_position_bucket)
|
| 454 |
+
values = values.permute([2, 0, 1])
|
| 455 |
+
return values
|
| 456 |
+
|
| 457 |
+
def forward(
|
| 458 |
+
self,
|
| 459 |
+
query,
|
| 460 |
+
key: Optional[Tensor],
|
| 461 |
+
value: Optional[Tensor],
|
| 462 |
+
key_padding_mask: Optional[Tensor] = None,
|
| 463 |
+
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
|
| 464 |
+
need_weights: bool = True,
|
| 465 |
+
static_kv: bool = False,
|
| 466 |
+
attn_mask: Optional[Tensor] = None,
|
| 467 |
+
before_softmax: bool = False,
|
| 468 |
+
need_head_weights: bool = False,
|
| 469 |
+
position_bias: Optional[Tensor] = None
|
| 470 |
+
) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
|
| 471 |
+
"""Input shape: Time x Batch x Channel
|
| 472 |
+
|
| 473 |
+
Args:
|
| 474 |
+
key_padding_mask (ByteTensor, optional): mask to exclude
|
| 475 |
+
keys that are pads, of shape `(batch, src_len)`, where
|
| 476 |
+
padding elements are indicated by 1s.
|
| 477 |
+
need_weights (bool, optional): return the attention weights,
|
| 478 |
+
averaged over heads (default: False).
|
| 479 |
+
attn_mask (ByteTensor, optional): typically used to
|
| 480 |
+
implement causal attention, where the mask prevents the
|
| 481 |
+
attention from looking forward in time (default: None).
|
| 482 |
+
before_softmax (bool, optional): return the raw attention
|
| 483 |
+
weights and values before the attention softmax.
|
| 484 |
+
need_head_weights (bool, optional): return the attention
|
| 485 |
+
weights for each head. Implies *need_weights*. Default:
|
| 486 |
+
return the average attention weights over all heads.
|
| 487 |
+
"""
|
| 488 |
+
if need_head_weights:
|
| 489 |
+
need_weights = True
|
| 490 |
+
|
| 491 |
+
is_tpu = query.device.type == "xla"
|
| 492 |
+
|
| 493 |
+
tgt_len, bsz, embed_dim = query.size()
|
| 494 |
+
src_len = tgt_len
|
| 495 |
+
assert embed_dim == self.embed_dim
|
| 496 |
+
assert list(query.size()) == [tgt_len, bsz, embed_dim]
|
| 497 |
+
if key is not None:
|
| 498 |
+
src_len, key_bsz, _ = key.size()
|
| 499 |
+
if not torch.jit.is_scripting():
|
| 500 |
+
assert key_bsz == bsz
|
| 501 |
+
assert value is not None
|
| 502 |
+
assert src_len, bsz == value.shape[:2]
|
| 503 |
+
|
| 504 |
+
if self.has_relative_attention_bias and position_bias is None:
|
| 505 |
+
position_bias = self.compute_bias(tgt_len, src_len)
|
| 506 |
+
position_bias = position_bias.unsqueeze(0).repeat(bsz, 1, 1, 1).view(bsz * self.num_heads, tgt_len, src_len)
|
| 507 |
+
|
| 508 |
+
if (
|
| 509 |
+
not is_tpu # don't use PyTorch version on TPUs
|
| 510 |
+
and incremental_state is None
|
| 511 |
+
and not static_kv
|
| 512 |
+
# A workaround for quantization to work. Otherwise JIT compilation
|
| 513 |
+
# treats bias in linear module as method.
|
| 514 |
+
and not torch.jit.is_scripting()
|
| 515 |
+
and self.q_head_dim == self.head_dim
|
| 516 |
+
):
|
| 517 |
+
assert key is not None and value is not None
|
| 518 |
+
assert attn_mask is None
|
| 519 |
+
|
| 520 |
+
attn_mask_rel_pos = None
|
| 521 |
+
if position_bias is not None:
|
| 522 |
+
attn_mask_rel_pos = position_bias
|
| 523 |
+
if self.gru_rel_pos:
|
| 524 |
+
query_layer = query.transpose(0, 1)
|
| 525 |
+
new_x_shape = query_layer.size()[:-1] + (self.num_heads, -1)
|
| 526 |
+
query_layer = query_layer.view(*new_x_shape)
|
| 527 |
+
query_layer = query_layer.permute(0, 2, 1, 3)
|
| 528 |
+
_B, _H, _L, __ = query_layer.size()
|
| 529 |
+
|
| 530 |
+
gate_a, gate_b = torch.sigmoid(self.grep_linear(query_layer).view(
|
| 531 |
+
_B, _H, _L, 2, 4).sum(-1, keepdim=False)).chunk(2, dim=-1)
|
| 532 |
+
gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0
|
| 533 |
+
attn_mask_rel_pos = gate_a_1.view(bsz * self.num_heads, -1, 1) * position_bias
|
| 534 |
+
|
| 535 |
+
attn_mask_rel_pos = attn_mask_rel_pos.view((-1, tgt_len, tgt_len))
|
| 536 |
+
k_proj_bias = self.k_proj.bias
|
| 537 |
+
if k_proj_bias is None:
|
| 538 |
+
k_proj_bias = torch.zeros_like(self.q_proj.bias)
|
| 539 |
+
|
| 540 |
+
x, attn = F.multi_head_attention_forward(
|
| 541 |
+
query,
|
| 542 |
+
key,
|
| 543 |
+
value,
|
| 544 |
+
self.embed_dim,
|
| 545 |
+
self.num_heads,
|
| 546 |
+
torch.empty([0]),
|
| 547 |
+
torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)),
|
| 548 |
+
self.bias_k,
|
| 549 |
+
self.bias_v,
|
| 550 |
+
self.add_zero_attn,
|
| 551 |
+
self.dropout_module.p,
|
| 552 |
+
self.out_proj.weight,
|
| 553 |
+
self.out_proj.bias,
|
| 554 |
+
self.training,
|
| 555 |
+
# self.training or self.dropout_module.apply_during_inference,
|
| 556 |
+
key_padding_mask,
|
| 557 |
+
need_weights,
|
| 558 |
+
attn_mask_rel_pos,
|
| 559 |
+
use_separate_proj_weight=True,
|
| 560 |
+
q_proj_weight=self.q_proj.weight,
|
| 561 |
+
k_proj_weight=self.k_proj.weight,
|
| 562 |
+
v_proj_weight=self.v_proj.weight,
|
| 563 |
+
)
|
| 564 |
+
return x, attn, position_bias
|
| 565 |
+
|
| 566 |
+
if incremental_state is not None:
|
| 567 |
+
saved_state = self._get_input_buffer(incremental_state)
|
| 568 |
+
if saved_state is not None and "prev_key" in saved_state:
|
| 569 |
+
# previous time steps are cached - no need to recompute
|
| 570 |
+
# key and value if they are static
|
| 571 |
+
if static_kv:
|
| 572 |
+
assert self.encoder_decoder_attention and not self.self_attention
|
| 573 |
+
key = value = None
|
| 574 |
+
else:
|
| 575 |
+
saved_state = None
|
| 576 |
+
|
| 577 |
+
if self.self_attention:
|
| 578 |
+
q = self.q_proj(query)
|
| 579 |
+
k = self.k_proj(query)
|
| 580 |
+
v = self.v_proj(query)
|
| 581 |
+
elif self.encoder_decoder_attention:
|
| 582 |
+
# encoder-decoder attention
|
| 583 |
+
q = self.q_proj(query)
|
| 584 |
+
if key is None:
|
| 585 |
+
assert value is None
|
| 586 |
+
k = v = None
|
| 587 |
+
else:
|
| 588 |
+
k = self.k_proj(key)
|
| 589 |
+
v = self.v_proj(key)
|
| 590 |
+
|
| 591 |
+
else:
|
| 592 |
+
assert key is not None and value is not None
|
| 593 |
+
q = self.q_proj(query)
|
| 594 |
+
k = self.k_proj(key)
|
| 595 |
+
v = self.v_proj(value)
|
| 596 |
+
q *= self.scaling
|
| 597 |
+
|
| 598 |
+
if self.bias_k is not None:
|
| 599 |
+
assert self.bias_v is not None
|
| 600 |
+
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
|
| 601 |
+
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
|
| 602 |
+
if attn_mask is not None:
|
| 603 |
+
attn_mask = torch.cat(
|
| 604 |
+
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
|
| 605 |
+
)
|
| 606 |
+
if key_padding_mask is not None:
|
| 607 |
+
key_padding_mask = torch.cat(
|
| 608 |
+
[
|
| 609 |
+
key_padding_mask,
|
| 610 |
+
key_padding_mask.new_zeros(key_padding_mask.size(0), 1),
|
| 611 |
+
],
|
| 612 |
+
dim=1,
|
| 613 |
+
)
|
| 614 |
+
|
| 615 |
+
q = (
|
| 616 |
+
q.contiguous()
|
| 617 |
+
.view(tgt_len, bsz * self.num_heads, self.q_head_dim)
|
| 618 |
+
.transpose(0, 1)
|
| 619 |
+
)
|
| 620 |
+
if k is not None:
|
| 621 |
+
k = (
|
| 622 |
+
k.contiguous()
|
| 623 |
+
.view(-1, bsz * self.num_heads, self.k_head_dim)
|
| 624 |
+
.transpose(0, 1)
|
| 625 |
+
)
|
| 626 |
+
if v is not None:
|
| 627 |
+
v = (
|
| 628 |
+
v.contiguous()
|
| 629 |
+
.view(-1, bsz * self.num_heads, self.head_dim)
|
| 630 |
+
.transpose(0, 1)
|
| 631 |
+
)
|
| 632 |
+
|
| 633 |
+
if saved_state is not None:
|
| 634 |
+
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
|
| 635 |
+
if "prev_key" in saved_state:
|
| 636 |
+
_prev_key = saved_state["prev_key"]
|
| 637 |
+
assert _prev_key is not None
|
| 638 |
+
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
|
| 639 |
+
if static_kv:
|
| 640 |
+
k = prev_key
|
| 641 |
+
else:
|
| 642 |
+
assert k is not None
|
| 643 |
+
k = torch.cat([prev_key, k], dim=1)
|
| 644 |
+
src_len = k.size(1)
|
| 645 |
+
if "prev_value" in saved_state:
|
| 646 |
+
_prev_value = saved_state["prev_value"]
|
| 647 |
+
assert _prev_value is not None
|
| 648 |
+
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
|
| 649 |
+
if static_kv:
|
| 650 |
+
v = prev_value
|
| 651 |
+
else:
|
| 652 |
+
assert v is not None
|
| 653 |
+
v = torch.cat([prev_value, v], dim=1)
|
| 654 |
+
prev_key_padding_mask: Optional[Tensor] = None
|
| 655 |
+
if "prev_key_padding_mask" in saved_state:
|
| 656 |
+
prev_key_padding_mask = saved_state["prev_key_padding_mask"]
|
| 657 |
+
assert k is not None and v is not None
|
| 658 |
+
key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
|
| 659 |
+
key_padding_mask=key_padding_mask,
|
| 660 |
+
prev_key_padding_mask=prev_key_padding_mask,
|
| 661 |
+
batch_size=bsz,
|
| 662 |
+
src_len=k.size(1),
|
| 663 |
+
static_kv=static_kv,
|
| 664 |
+
)
|
| 665 |
+
|
| 666 |
+
saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim)
|
| 667 |
+
saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim)
|
| 668 |
+
saved_state["prev_key_padding_mask"] = key_padding_mask
|
| 669 |
+
# In this branch incremental_state is never None
|
| 670 |
+
assert incremental_state is not None
|
| 671 |
+
incremental_state = self._set_input_buffer(incremental_state, saved_state)
|
| 672 |
+
assert k is not None
|
| 673 |
+
assert k.size(1) == src_len
|
| 674 |
+
|
| 675 |
+
# This is part of a workaround to get around fork/join parallelism
|
| 676 |
+
# not supporting Optional types.
|
| 677 |
+
if key_padding_mask is not None and key_padding_mask.dim() == 0:
|
| 678 |
+
key_padding_mask = None
|
| 679 |
+
|
| 680 |
+
if key_padding_mask is not None:
|
| 681 |
+
assert key_padding_mask.size(0) == bsz
|
| 682 |
+
assert key_padding_mask.size(1) == src_len
|
| 683 |
+
|
| 684 |
+
if self.add_zero_attn:
|
| 685 |
+
assert v is not None
|
| 686 |
+
src_len += 1
|
| 687 |
+
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
|
| 688 |
+
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
|
| 689 |
+
if attn_mask is not None:
|
| 690 |
+
attn_mask = torch.cat(
|
| 691 |
+
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
|
| 692 |
+
)
|
| 693 |
+
if key_padding_mask is not None:
|
| 694 |
+
key_padding_mask = torch.cat(
|
| 695 |
+
[
|
| 696 |
+
key_padding_mask,
|
| 697 |
+
torch.zeros(key_padding_mask.size(0), 1).type_as(
|
| 698 |
+
key_padding_mask
|
| 699 |
+
),
|
| 700 |
+
],
|
| 701 |
+
dim=1,
|
| 702 |
+
)
|
| 703 |
+
|
| 704 |
+
attn_weights = torch.bmm(q, k.transpose(1, 2))
|
| 705 |
+
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
|
| 706 |
+
|
| 707 |
+
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
|
| 708 |
+
|
| 709 |
+
if attn_mask is not None:
|
| 710 |
+
attn_mask = attn_mask.unsqueeze(0)
|
| 711 |
+
attn_weights += attn_mask
|
| 712 |
+
|
| 713 |
+
if key_padding_mask is not None:
|
| 714 |
+
# don't attend to padding symbols
|
| 715 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
| 716 |
+
if not is_tpu:
|
| 717 |
+
attn_weights = attn_weights.masked_fill(
|
| 718 |
+
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
|
| 719 |
+
float("-inf"),
|
| 720 |
+
)
|
| 721 |
+
else:
|
| 722 |
+
attn_weights = attn_weights.transpose(0, 2)
|
| 723 |
+
attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf"))
|
| 724 |
+
attn_weights = attn_weights.transpose(0, 2)
|
| 725 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
| 726 |
+
|
| 727 |
+
if before_softmax:
|
| 728 |
+
return attn_weights, v, position_bias
|
| 729 |
+
|
| 730 |
+
if position_bias is not None:
|
| 731 |
+
if self.gru_rel_pos == 1:
|
| 732 |
+
query_layer = q.view(bsz, self.num_heads, tgt_len, self.q_head_dim)
|
| 733 |
+
_B, _H, _L, __ = query_layer.size()
|
| 734 |
+
gate_a, gate_b = torch.sigmoid(self.grep_linear(query_layer).view(
|
| 735 |
+
_B, _H, _L, 2, 4).sum(-1, keepdim=False)).chunk(2, dim=-1)
|
| 736 |
+
gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0
|
| 737 |
+
position_bias = gate_a_1.view(bsz * self.num_heads, -1, 1) * position_bias
|
| 738 |
+
|
| 739 |
+
position_bias = position_bias.view(attn_weights.size())
|
| 740 |
+
|
| 741 |
+
attn_weights = attn_weights + position_bias
|
| 742 |
+
|
| 743 |
+
attn_weights_float = F.softmax(
|
| 744 |
+
attn_weights, dim=-1
|
| 745 |
+
)
|
| 746 |
+
attn_weights = attn_weights_float.type_as(attn_weights)
|
| 747 |
+
attn_probs = self.dropout_module(attn_weights)
|
| 748 |
+
|
| 749 |
+
assert v is not None
|
| 750 |
+
attn = torch.bmm(attn_probs, v)
|
| 751 |
+
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
|
| 752 |
+
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
| 753 |
+
attn = self.out_proj(attn)
|
| 754 |
+
attn_weights: Optional[Tensor] = None
|
| 755 |
+
if need_weights:
|
| 756 |
+
attn_weights = attn_weights_float.view(
|
| 757 |
+
bsz, self.num_heads, tgt_len, src_len
|
| 758 |
+
).transpose(1, 0)
|
| 759 |
+
if not need_head_weights:
|
| 760 |
+
# average attention weights over heads
|
| 761 |
+
attn_weights = attn_weights.mean(dim=0)
|
| 762 |
+
|
| 763 |
+
return attn, attn_weights, position_bias
|
| 764 |
+
|
| 765 |
+
@staticmethod
|
| 766 |
+
def _append_prev_key_padding_mask(
|
| 767 |
+
key_padding_mask: Optional[Tensor],
|
| 768 |
+
prev_key_padding_mask: Optional[Tensor],
|
| 769 |
+
batch_size: int,
|
| 770 |
+
src_len: int,
|
| 771 |
+
static_kv: bool,
|
| 772 |
+
) -> Optional[Tensor]:
|
| 773 |
+
# saved key padding masks have shape (bsz, seq_len)
|
| 774 |
+
if prev_key_padding_mask is not None and static_kv:
|
| 775 |
+
new_key_padding_mask = prev_key_padding_mask
|
| 776 |
+
elif prev_key_padding_mask is not None and key_padding_mask is not None:
|
| 777 |
+
new_key_padding_mask = torch.cat(
|
| 778 |
+
[prev_key_padding_mask.float(), key_padding_mask.float()], dim=1
|
| 779 |
+
)
|
| 780 |
+
# During incremental decoding, as the padding token enters and
|
| 781 |
+
# leaves the frame, there will be a time when prev or current
|
| 782 |
+
# is None
|
| 783 |
+
elif prev_key_padding_mask is not None:
|
| 784 |
+
if src_len > prev_key_padding_mask.size(1):
|
| 785 |
+
filler = torch.zeros(
|
| 786 |
+
(batch_size, src_len - prev_key_padding_mask.size(1)),
|
| 787 |
+
device=prev_key_padding_mask.device,
|
| 788 |
+
)
|
| 789 |
+
new_key_padding_mask = torch.cat(
|
| 790 |
+
[prev_key_padding_mask.float(), filler.float()], dim=1
|
| 791 |
+
)
|
| 792 |
+
else:
|
| 793 |
+
new_key_padding_mask = prev_key_padding_mask.float()
|
| 794 |
+
elif key_padding_mask is not None:
|
| 795 |
+
if src_len > key_padding_mask.size(1):
|
| 796 |
+
filler = torch.zeros(
|
| 797 |
+
(batch_size, src_len - key_padding_mask.size(1)),
|
| 798 |
+
device=key_padding_mask.device,
|
| 799 |
+
)
|
| 800 |
+
new_key_padding_mask = torch.cat(
|
| 801 |
+
[filler.float(), key_padding_mask.float()], dim=1
|
| 802 |
+
)
|
| 803 |
+
else:
|
| 804 |
+
new_key_padding_mask = key_padding_mask.float()
|
| 805 |
+
else:
|
| 806 |
+
new_key_padding_mask = prev_key_padding_mask
|
| 807 |
+
return new_key_padding_mask
|
| 808 |
+
|
| 809 |
+
def _get_input_buffer(
|
| 810 |
+
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
|
| 811 |
+
) -> Dict[str, Optional[Tensor]]:
|
| 812 |
+
result = self.get_incremental_state(incremental_state, "attn_state")
|
| 813 |
+
if result is not None:
|
| 814 |
+
return result
|
| 815 |
+
else:
|
| 816 |
+
empty_result: Dict[str, Optional[Tensor]] = {}
|
| 817 |
+
return empty_result
|
| 818 |
+
|
| 819 |
+
def _set_input_buffer(
|
| 820 |
+
self,
|
| 821 |
+
incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
|
| 822 |
+
buffer: Dict[str, Optional[Tensor]],
|
| 823 |
+
):
|
| 824 |
+
return self.set_incremental_state(incremental_state, "attn_state", buffer)
|
| 825 |
+
|
| 826 |
+
def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int):
|
| 827 |
+
return attn_weights
|
Transformer_WavLM.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from SSL_WavLM.WavLM import WavLMConfig, WavLM
|
| 6 |
+
from collections import OrderedDict
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class MHFA(nn.Module):
|
| 10 |
+
"""
|
| 11 |
+
Multi-Head Factorized Attentive (MHFA) Pooling.
|
| 12 |
+
This layer takes representations from all layers of a model (like WavLM)
|
| 13 |
+
and aggregates them into a fixed-size embedding using a multi-head
|
| 14 |
+
attention-like mechanism.
|
| 15 |
+
"""
|
| 16 |
+
def __init__(self, head_nb=8, inputs_dim=768, compression_dim=128, outputs_dim=256, nb_layer=13):
|
| 17 |
+
super(MHFA, self).__init__()
|
| 18 |
+
# Learnable weights to compute a weighted average over the layers
|
| 19 |
+
self.weights_k = nn.Parameter(torch.ones(nb_layer), requires_grad=True)
|
| 20 |
+
self.weights_v = nn.Parameter(torch.ones(nb_layer), requires_grad=True)
|
| 21 |
+
|
| 22 |
+
self.head_nb = head_nb
|
| 23 |
+
self.cmp_dim = compression_dim
|
| 24 |
+
|
| 25 |
+
# Linear layers for processing
|
| 26 |
+
self.cmp_linear_k = nn.Linear(inputs_dim, self.cmp_dim)
|
| 27 |
+
self.cmp_linear_v = nn.Linear(inputs_dim, self.cmp_dim)
|
| 28 |
+
self.att_head = nn.Linear(self.cmp_dim, self.head_nb)
|
| 29 |
+
self.pooling_fc = nn.Linear(self.head_nb * self.cmp_dim, outputs_dim)
|
| 30 |
+
|
| 31 |
+
def forward(self, x):
|
| 32 |
+
# Input x shape: [Batch, Dim, Frame_len, Nb_Layer]
|
| 33 |
+
|
| 34 |
+
# 1. Compute weighted average for Key and Value across layers
|
| 35 |
+
# The softmax ensures the weights sum to 1.
|
| 36 |
+
k = torch.sum(x * F.softmax(self.weights_k, dim=-1), dim=-1).transpose(1, 2)
|
| 37 |
+
v = torch.sum(x * F.softmax(self.weights_v, dim=-1), dim=-1).transpose(1, 2)
|
| 38 |
+
# Shape of k, v is now [Batch, Frame_len, Dim]
|
| 39 |
+
|
| 40 |
+
# 2. Compress Key and Value representations
|
| 41 |
+
k = self.cmp_linear_k(k) # -> [B, T, cmp_dim]
|
| 42 |
+
v = self.cmp_linear_v(v) # -> [B, T, cmp_dim]
|
| 43 |
+
|
| 44 |
+
# 3. Compute attention scores from the compressed key
|
| 45 |
+
att_scores = self.att_head(k) # -> [B, T, head_nb]
|
| 46 |
+
att_weights = F.softmax(att_scores, dim=1) # Softmax over time dimension
|
| 47 |
+
|
| 48 |
+
# 4. Perform attention-pooling
|
| 49 |
+
# Reshape for broadcasting:
|
| 50 |
+
# v: [B, T, 1, cmp_dim]
|
| 51 |
+
# att_weights: [B, T, head_nb, 1]
|
| 52 |
+
# The multiplication broadcasts to [B, T, head_nb, cmp_dim]
|
| 53 |
+
pooled_features = torch.sum(v.unsqueeze(-2) * att_weights.unsqueeze(-1), dim=1)
|
| 54 |
+
# Sum over time dimension results in [B, head_nb, cmp_dim]
|
| 55 |
+
|
| 56 |
+
# 5. Flatten and project to final output dimension
|
| 57 |
+
b, h, f = pooled_features.shape
|
| 58 |
+
pooled_features = pooled_features.reshape(b, -1) # -> [B, head_nb * cmp_dim]
|
| 59 |
+
output_embedding = self.pooling_fc(pooled_features) # -> [B, outputs_dim]
|
| 60 |
+
|
| 61 |
+
return output_embedding
|
| 62 |
+
|
| 63 |
+
class WavLM_MHFA(nn.Module):
|
| 64 |
+
"""
|
| 65 |
+
The main model that combines a pre-trained WavLM with the MHFA backend.
|
| 66 |
+
"""
|
| 67 |
+
def __init__(self, model_path):
|
| 68 |
+
super(WavLM_MHFA, self).__init__()
|
| 69 |
+
|
| 70 |
+
print(f"Loading base model checkpoint from: {model_path}")
|
| 71 |
+
# Use map_location to ensure it works on CPU if no GPU is available
|
| 72 |
+
checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
|
| 73 |
+
|
| 74 |
+
# Correctly access the config dictionary
|
| 75 |
+
cfg_dict = checkpoint['cfg']
|
| 76 |
+
cfg = WavLMConfig(cfg_dict)
|
| 77 |
+
self.model = WavLM(cfg)
|
| 78 |
+
|
| 79 |
+
inputs_dim = checkpoint['cfg']['encoder_embed_dim']
|
| 80 |
+
nb_layer = checkpoint['cfg']['encoder_layers'] + 1
|
| 81 |
+
|
| 82 |
+
self.back_end = MHFA(inputs_dim=inputs_dim, head_nb=32, outputs_dim=256, nb_layer=nb_layer)
|
| 83 |
+
|
| 84 |
+
# Load the pre-trained weights for the WavLM part of the model
|
| 85 |
+
self.load_checkpoint(checkpoint['model'])
|
| 86 |
+
|
| 87 |
+
def load_checkpoint(self, checkpoint_state):
|
| 88 |
+
loaded_state = checkpoint_state
|
| 89 |
+
|
| 90 |
+
# Create a new state_dict to hold the cleaned keys
|
| 91 |
+
cleaned_state_dict = OrderedDict()
|
| 92 |
+
|
| 93 |
+
# Handle checkpoints that might be nested (e.g., inside a 'speaker_extractor')
|
| 94 |
+
prefix_to_strip = 'speaker_extractor.'
|
| 95 |
+
for k, v in loaded_state.items():
|
| 96 |
+
if 'projection' in k:
|
| 97 |
+
continue
|
| 98 |
+
if k.startswith(prefix_to_strip):
|
| 99 |
+
cleaned_key = k[len(prefix_to_strip):]
|
| 100 |
+
cleaned_state_dict[cleaned_key] = v
|
| 101 |
+
else:
|
| 102 |
+
cleaned_state_dict[k] = v
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
# Now load the cleaned state_dict into the current model
|
| 106 |
+
super().load_state_dict(cleaned_state_dict, strict=True)
|
| 107 |
+
print("Successfully loaded weights for both WavLM and MHFA backend.")
|
| 108 |
+
|
| 109 |
+
def forward(self, raw_wav):
|
| 110 |
+
# Feature extraction should not require gradients and should be in eval mode
|
| 111 |
+
|
| 112 |
+
_, layer_results = self.model.extract_features(raw_wav, output_layer=100)
|
| 113 |
+
|
| 114 |
+
# Prepare layer representations for the MHFA backend
|
| 115 |
+
# Input layer_results: List of (Time, Batch, Dim) tensors
|
| 116 |
+
# Stack them to create [Batch, Time, Dim, Nb_Layer]
|
| 117 |
+
stacked_reps = torch.stack([x.transpose(0, 1) for x, _ in layer_results], dim=-1)
|
| 118 |
+
# Permute to match MHFA input: [Batch, Dim, Time, Nb_Layer]
|
| 119 |
+
layer_reps = stacked_reps.permute(0, 2, 1, 3)
|
| 120 |
+
|
| 121 |
+
# The backend part is trainable
|
| 122 |
+
spk_embedding = self.back_end(layer_reps)
|
| 123 |
+
|
| 124 |
+
return spk_embedding
|
| 125 |
+
|
| 126 |
+
if __name__ == "__main__":
|
| 127 |
+
|
| 128 |
+
# Step 1: Instantiate the main model
|
| 129 |
+
# The model path should point to the pre-trained base model (e.g., WavLM-Base+.pt)
|
| 130 |
+
print("Loading checkpoint file ...")
|
| 131 |
+
|
| 132 |
+
base_model_path = './SSL_WavLM/model_convert.pt'
|
| 133 |
+
model = WavLM_MHFA(model_path=base_model_path)
|
| 134 |
+
model.eval() # Set the model to evaluation mode
|
| 135 |
+
|
| 136 |
+
print("\nModel WavLM_MHFA initialized successfully.")
|
| 137 |
+
|
| 138 |
+
# Step 2: Perform a forward pass with dummy data
|
| 139 |
+
batch_size = 4
|
| 140 |
+
audio_samples = 32000 # ~2 seconds of audio at 16kHz
|
| 141 |
+
dummy_wav = torch.randn(batch_size, audio_samples)
|
| 142 |
+
|
| 143 |
+
print(f"\nPerforming forward pass with dummy input of shape: {dummy_wav.shape}")
|
| 144 |
+
|
| 145 |
+
speaker_embedding = model(dummy_wav)
|
| 146 |
+
|
| 147 |
+
print("Forward pass successful!")
|
| 148 |
+
print(f"Output speaker embedding shape: {speaker_embedding.shape}")
|