--- tags: - sentence-transformers - sentence-similarity - feature-extraction - dense - generated_from_trainer - dataset_size:286816 - loss:SoftmaxLoss base_model: google-bert/bert-base-cased widget: - source_sentence: CC(C)C[C@H](NC(=O)[C@@H](N)Cc1ccccc1)C(=O)NCc1cc(=O)c(O)c[nH]1 sentences: - CC(=O)N1CCC(Cc2ccc(F)cc2)CC1 - C=CC(C)(C)c1cc(CCCc2cc(O)c(O)c(CC3OC3(C)C)c2CC=C(C)C)c(O)cc1O - COc1cc([N+](=O)[O-])ccc1/C=C/C(=N\O)c1cc2ccccc2cc1O - source_sentence: O=C(OCc1ccc(O)cc1)c1cc(O)c(O)c(O)c1 sentences: - COc1ccc(/C=C/C(=O)NCCCNC(=O)/C=C/c2ccc(OC)c(O)c2)cc1O - CCCCCCCCSCc1cc(=O)c(O)co1 - O=C(NCCc1c[nH]c2ccc(O)cc12)c1ccc(O)cc1O - source_sentence: O=C(/C=C/c1ccc(O)cc1)c1ccc(NS(=O)(=O)c2ccc([N+](=O)[O-])cc2)cc1 sentences: - Nc1ccc(S(=O)(=O)Nc2ccc(C(=O)/C=C/c3ccc(O)cc3)cc2)cc1 - O=C(NO)Nc1ccc(O)cc1 - COc1ccc(C(C)=O)c(OC(=O)/C=C/c2ccc(F)cc2)c1 - source_sentence: O=C(c1ccc2ccccc2c1)N1CCC(N2CCCCC2)CC1 sentences: - N[C@@H](Cc1ccccc1)C(=O)N[C@@H](Cc1ccccc1)C(=O)OCc1cc(=O)c(O)c[nH]1 - '[C-]#N' - COc1ccc(/C=C/C(=O)NCCCNC(=O)/C=C/c2ccc(OC)c(O)c2)cc1O - source_sentence: NC(=S)c1cccnc1 sentences: - COc1ccc(/C=C/C(=N\O)c2cc3ccccc3cc2O)c(OC)c1 - C/C(=N\NC(N)=S)c1cccc(NC(=O)C(F)(F)F)c1 - Cc1ccc(C(C)C)c(OC(=O)/C=C/c2ccc(O)cc2)c1 pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on google-bert/bert-base-cased This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - csv ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'}) (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Jimmy-Ooi/Tyrisonase_test_model") # Run inference sentences = [ 'NC(=S)c1cccnc1', 'Cc1ccc(C(C)C)c(OC(=O)/C=C/c2ccc(O)cc2)c1', 'C/C(=N\\NC(N)=S)c1cccc(NC(=O)C(F)(F)F)c1', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities) # tensor([[1.0000, 0.9019, 0.8925], # [0.9019, 1.0000, 0.9356], # [0.8925, 0.9356, 1.0000]]) ``` ## Training Details ### Training Dataset #### csv * Dataset: csv * Size: 286,816 training samples * Columns: premise, hypothesis, and label * Approximate statistics based on the first 1000 samples: | | premise | hypothesis | label | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | premise | hypothesis | label | |:-----------------------------------------------------------|:--------------------------------------------------------|:---------------| | NC(=O)[C@H](Cc1ccccc1)NC(=O)OCc1cc(=O)c(O)co1 | CNC(=S)N/N=C(\C)c1ccc(OC)cc1O | 2 | | CC/C(=N\NC(N)=S)c1ccc(C2CCCCC2)cc1 | COc1cccc(C(=O)N2CCN(Cc3ccc(F)cc3)CC2)c1 | 2 | | O=C(O)CSc1nnc(NC(=S)Nc2cccc(C(F)(F)F)c2)s1 | CCCCOc1cccc2c1C(=O)c1c(OCCCC)cc(CO)cc1C2=O | 0 | * Loss: [SoftmaxLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss) ### Evaluation Dataset #### csv * Dataset: csv * Size: 50,615 evaluation samples * Columns: premise, hypothesis, and label * Approximate statistics based on the first 1000 samples: | | premise | hypothesis | label | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | premise | hypothesis | label | |:---------------------------------------------------------------|:-----------------------------------------------------------------------|:---------------| | O=Cc1ccoc1 | Cn1c2ccccc2c2cc(/C=C/C(=O)c3cccc(NC(=O)c4ccccc4F)c3)ccc21 | 2 | | COc1cc(C=O)ccc1OC(=O)CN1CCN(C)CC1 | Oc1ccc(O)cc1 | 2 | | O=C(c1cccc([N+](=O)[O-])c1)N1CCN(Cc2ccc(F)cc2)CC1 | CNC(=S)N/N=C(\C)c1ccc(OC)cc1O | 2 | * Loss: [SoftmaxLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss) ### Framework Versions - Python: 3.12.11 - Sentence Transformers: 5.1.1 - Transformers: 4.56.1 - PyTorch: 2.8.0+cu126 - Accelerate: 1.10.1 - Datasets: 4.0.0 - Tokenizers: 0.22.0 ## Citation ### BibTeX #### Sentence Transformers and SoftmaxLoss ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```