JoaoVitorr commited on
Commit
b8cece2
·
verified ·
1 Parent(s): 86d6a1b

Push model using huggingface_hub.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: Poke de Salmão com Cream Cheese
9
+ - text: Podrão da esquina
10
+ - text: Pizza Marguerita
11
+ - text: Nhoque ao sugo
12
+ - text: Pizza Portuguesa
13
+ metrics:
14
+ - accuracy
15
+ pipeline_tag: text-classification
16
+ library_name: setfit
17
+ inference: true
18
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
19
+ ---
20
+
21
+ # SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
22
+
23
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
24
+
25
+ The model has been trained using an efficient few-shot learning technique that involves:
26
+
27
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
28
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
29
+
30
+ ## Model Details
31
+
32
+ ### Model Description
33
+ - **Model Type:** SetFit
34
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
35
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
36
+ - **Maximum Sequence Length:** 128 tokens
37
+ - **Number of Classes:** 8 classes
38
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
39
+ <!-- - **Language:** Unknown -->
40
+ <!-- - **License:** Unknown -->
41
+
42
+ ### Model Sources
43
+
44
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
45
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
46
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
47
+
48
+ ### Model Labels
49
+ | Label | Examples |
50
+ |:------------|:-----------------------------------------------------------------------------------------------------------|
51
+ | Lanche | <ul><li>'X-Tudo completo com bacon'</li><li>'Hamburguer artesanal'</li><li>'Sanduíche de frango'</li></ul> |
52
+ | Japonesa | <ul><li>'Barca de Sushi 40 peças'</li><li>'Temaki de Salmão'</li><li>'Sashimi variado'</li></ul> |
53
+ | Brasileira | <ul><li>'Feijoada completa'</li><li>'Prato Feito de Carne'</li><li>'Arroz, feijão e bife'</li></ul> |
54
+ | Pizza/Massa | <ul><li>'Pizza de Calabresa'</li><li>'Pizza Portuguesa'</li><li>'Macarrão a Bolonhesa'</li></ul> |
55
+ | Sobremesa | <ul><li>'Petit Gateau com sorvete'</li><li>'Bolo de Chocolate'</li><li>'Açaí 500ml com granola'</li></ul> |
56
+ | Bebida | <ul><li>'Coca-Cola Zero'</li><li>'Guaraná Antartica'</li><li>'Suco de Laranja Natural'</li></ul> |
57
+ | Petiscos | <ul><li>'Batata Frita com cheddar'</li><li>'Fritas grande'</li><li>'Porção de Mandioca'</li></ul> |
58
+ | Árabe | <ul><li>'Esfiha de Carne'</li><li>'Kibe frito'</li><li>'Esfiha de Queijo'</li></ul> |
59
+
60
+ ## Uses
61
+
62
+ ### Direct Use for Inference
63
+
64
+ First install the SetFit library:
65
+
66
+ ```bash
67
+ pip install setfit
68
+ ```
69
+
70
+ Then you can load this model and run inference.
71
+
72
+ ```python
73
+ from setfit import SetFitModel
74
+
75
+ # Download from the 🤗 Hub
76
+ model = SetFitModel.from_pretrained("JoaoVitorr/food-classification-model")
77
+ # Run inference
78
+ preds = model("Nhoque ao sugo")
79
+ ```
80
+
81
+ <!--
82
+ ### Downstream Use
83
+
84
+ *List how someone could finetune this model on their own dataset.*
85
+ -->
86
+
87
+ <!--
88
+ ### Out-of-Scope Use
89
+
90
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
91
+ -->
92
+
93
+ <!--
94
+ ## Bias, Risks and Limitations
95
+
96
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
97
+ -->
98
+
99
+ <!--
100
+ ### Recommendations
101
+
102
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
103
+ -->
104
+
105
+ ## Training Details
106
+
107
+ ### Training Set Metrics
108
+ | Training set | Min | Median | Max |
109
+ |:-------------|:----|:-------|:----|
110
+ | Word count | 1 | 2.84 | 6 |
111
+
112
+ | Label | Training Sample Count |
113
+ |:------------|:----------------------|
114
+ | Bebida | 9 |
115
+ | Brasileira | 9 |
116
+ | Japonesa | 9 |
117
+ | Lanche | 9 |
118
+ | Petiscos | 10 |
119
+ | Pizza/Massa | 9 |
120
+ | Sobremesa | 9 |
121
+ | Árabe | 11 |
122
+
123
+ ### Training Hyperparameters
124
+ - batch_size: (16, 16)
125
+ - num_epochs: (1, 1)
126
+ - max_steps: -1
127
+ - sampling_strategy: oversampling
128
+ - num_iterations: 20
129
+ - body_learning_rate: (1e-05, 1e-05)
130
+ - head_learning_rate: 0.01
131
+ - loss: CosineSimilarityLoss
132
+ - distance_metric: cosine_distance
133
+ - margin: 0.25
134
+ - end_to_end: False
135
+ - use_amp: False
136
+ - warmup_proportion: 0.1
137
+ - l2_weight: 0.01
138
+ - seed: 42
139
+ - eval_max_steps: -1
140
+ - load_best_model_at_end: False
141
+
142
+ ### Training Results
143
+ | Epoch | Step | Training Loss | Validation Loss |
144
+ |:------:|:----:|:-------------:|:---------------:|
145
+ | 0.0053 | 1 | 0.291 | - |
146
+ | 0.2660 | 50 | 0.2175 | - |
147
+ | 0.5319 | 100 | 0.1953 | - |
148
+ | 0.7979 | 150 | 0.1689 | - |
149
+
150
+ ### Framework Versions
151
+ - Python: 3.12.12
152
+ - SetFit: 1.1.3
153
+ - Sentence Transformers: 5.1.2
154
+ - Transformers: 4.57.1
155
+ - PyTorch: 2.8.0+cu126
156
+ - Datasets: 4.0.0
157
+ - Tokenizers: 0.22.1
158
+
159
+ ## Citation
160
+
161
+ ### BibTeX
162
+ ```bibtex
163
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
164
+ doi = {10.48550/ARXIV.2209.11055},
165
+ url = {https://arxiv.org/abs/2209.11055},
166
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
167
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
168
+ title = {Efficient Few-Shot Learning Without Prompts},
169
+ publisher = {arXiv},
170
+ year = {2022},
171
+ copyright = {Creative Commons Attribution 4.0 International}
172
+ }
173
+ ```
174
+
175
+ <!--
176
+ ## Glossary
177
+
178
+ *Clearly define terms in order to be accessible across audiences.*
179
+ -->
180
+
181
+ <!--
182
+ ## Model Card Authors
183
+
184
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
185
+ -->
186
+
187
+ <!--
188
+ ## Model Card Contact
189
+
190
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
191
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "dtype": "float32",
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "transformers_version": "4.57.1",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 250037
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "5.1.2",
4
+ "transformers": "4.57.1",
5
+ "pytorch": "2.8.0+cu126"
6
+ },
7
+ "model_type": "SentenceTransformer",
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
config_setfit.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "Bebida",
5
+ "Brasileira",
6
+ "Japonesa",
7
+ "Lanche",
8
+ "Petiscos",
9
+ "Pizza/Massa",
10
+ "Sobremesa",
11
+ "\u00c1rabe"
12
+ ]
13
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b96790b0a1a53629a22c5fcdd48f11ad2033ac574216d645c53214622d8b886a
3
+ size 470637416
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7ef0e18d563c2317795b797ee3572e239dbcf785beb09672b72c6f80cd2383e
3
+ size 25831
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 128,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260