--- license: mit tags: - image-classification - resnet - roadwork-detection - competitor-model --- # ResNet-18 Roadwork Detector ResNet-18 model for eroadwork ## Model Details - **Architecture**: ResNet-18 - **Task**: Binary image classification (Roadwork detection) - **Framework**: PyTorch/torchvision - **Input Size**: 224x224 - **Number of Parameters**: ~11M - **Output Type**: sigmoid ## Usage ```python import torch from torchvision import models, transforms from torch import nn from PIL import Image # Load model model = models.resnet18(weights=None) model.fc = nn.Linear(512, 2) model.load_state_dict(torch.load('pytorch_model.bin')) model.eval() # Prepare image transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) image = Image.open('your_image.jpg') input_tensor = transform(image).unsqueeze(0) # Inference with torch.no_grad(): output = model(input_tensor) prediction = torch.nn.functional.softmax(output, dim=1) print(f"No Roadwork: {prediction[0][0]:.2%}") print(f"Roadwork: {prediction[0][1]:.2%}") ``` ## Classes - 0: No Roadwork - 1: Roadwork ## Submitted By 5Fc8jh7Yu65v7K4hi9s6d3MkkGJ8g4 ## Submission Time 2025-10-24 02:12:45