--- license: mit datasets: - PolyAI/banking77 language: - en tags: - autoencoder --- # VAE trained on Banking 77 Open Intent Classification Dataset This is a Variational Autoencoder (VAE) trained on the [PolyAI/banking77](https://huggingface.co/datasets/PolyAI/banking77) dataset. ### Architecture - **input_dim**: 768 - **hidden_dim**: 256 - **latent_dim**: 64 #### Encoder The encoder maps the input to a latent space distribution. ```python encoder = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU() ) mu = nn.Linear(hidden_dim, latent_dim) logvar = nn.Linear(hidden_dim, latent_dim) ``` #### Decoder The decoder reconstructs the input from a sample of the latent space. ```python decoder = nn.Sequential( nn.Linear(latent_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim) ) ``` #### Metrics The model was trained and evaluated using the following metrics: 1. Training set: VAE Loss * 50% reconstruction loss between original input vs reconstructed output * 50% KL divergence between Latent Z vs standard normal distribution 2. Validation set: 100% reconstruction loss -> used to find the best model (with the lowest reconstruction loss)