---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6500
- loss:CosineSimilarityLoss
base_model: keepitreal/vietnamese-sbert
widget:
- source_sentence: 64 đường tố hữu đông anh hải phòng
sentences:
- 64 đường tố hữu đông anh hải phòng
- 80 mễ trì phú nhuận tp cà mau
- 81 phùng khồang phường quận 6 đà nẵng
- source_sentence: cầu. giấy. chương. mỹ. tphường. hà. tĩnh
sentences:
- lê. đức. thọ. hóc. môngõ sóc. trăng
- phạm hùng phường thanh trì thành phố quy nhơn
- 74 đường, nguyễn, văn, cừ, phường, thường, tín, đồng, tháp
- source_sentence: phạm. văngõ bạchuyện đông. anhuyện sóc. trăng
sentences:
- số. 95 mễ. trì. phường. hai. bà. trưng. hồ. chí. minh
- 148 đường trần thái tông bình chánh bình dương
- số 119 tố hữu tân phú nam định
- source_sentence: trần thai tong thu đuc soc trầng
sentences:
- đức thọ đông anh hải phòng
- phạm hung quận đan phuong ninh binh
- trầnthái tông thủ đức sóc trăng
- source_sentence: xuan, thuy, thanh, tri, đong, thap
sentences:
- xuân, thủy, thanh, trì, đồng, tháp
- so 143 me tri quan 10 lam đong
- trần thai tong thach that thanh phồ kon tum
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on keepitreal/vietnamese-sbert
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: address eval
type: address-eval
metrics:
- type: cosine_accuracy
value: 0.91
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.6586315035820007
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9014925373134328
name: Cosine F1
- type: cosine_f1_threshold
value: 0.6586315035820007
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.897029702970297
name: Cosine Precision
- type: cosine_recall
value: 0.906
name: Cosine Recall
- type: cosine_ap
value: 0.9161149688703704
name: Cosine Ap
- type: cosine_mcc
value: 0.8186854636882175
name: Cosine Mcc
---
# SentenceTransformer based on keepitreal/vietnamese-sbert
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [keepitreal/vietnamese-sbert](https://huggingface.co/keepitreal/vietnamese-sbert). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [keepitreal/vietnamese-sbert](https://huggingface.co/keepitreal/vietnamese-sbert)
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Kao1412/Classification_Address")
# Run inference
sentences = [
'xuan, thuy, thanh, tri, đong, thap',
'xuân, thủy, thanh, trì, đồng, tháp',
'trần thai tong thach that thanh phồ kon tum',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `address-eval`
* Evaluated with [BinaryClassificationEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:--------------------------|:-----------|
| cosine_accuracy | 0.91 |
| cosine_accuracy_threshold | 0.6586 |
| cosine_f1 | 0.9015 |
| cosine_f1_threshold | 0.6586 |
| cosine_precision | 0.897 |
| cosine_recall | 0.906 |
| **cosine_ap** | **0.9161** |
| cosine_mcc | 0.8187 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 6,500 training samples
* Columns: sentence_0, sentence_1, and label
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
42 lê van lương ba đình an giang | 42 lê văn lương ba đình an giang | 1.0 |
| so 51 đuong nguyễn chi thanh đong anh đa nang | phạm van bach phu xuyen soc trầng | 0.0 |
| phồ, le, van, luong, phu, nhuan, long, an | phồ, le, văn, lương, phu, nhuan, long, an | 1.0 |
* Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters