Kirim1 commited on
Commit
b8028b4
·
verified ·
1 Parent(s): 5986a50

Create modeling_kirim.py

Browse files
Files changed (1) hide show
  1. modeling_kirim.py +481 -0
modeling_kirim.py ADDED
@@ -0,0 +1,481 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Kirim Model Implementation
3
+ Based on LLaMA/DeepSeek architecture with optimizations
4
+ """
5
+
6
+ import math
7
+ from typing import List, Optional, Tuple, Union
8
+
9
+ import torch
10
+ import torch.nn.functional as F
11
+ import torch.utils.checkpoint
12
+ from torch import nn
13
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
14
+
15
+ from transformers.activations import ACT2FN
16
+ from transformers.cache_utils import Cache, DynamicCache
17
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
18
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
19
+ from transformers.modeling_utils import PreTrainedModel
20
+ from transformers.utils import logging
21
+
22
+ from .configuration_kirim import KirimConfig
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+
27
+ class KirimRMSNorm(nn.Module):
28
+ def __init__(self, hidden_size, eps=1e-6):
29
+ super().__init__()
30
+ self.weight = nn.Parameter(torch.ones(hidden_size))
31
+ self.variance_epsilon = eps
32
+
33
+ def forward(self, hidden_states):
34
+ input_dtype = hidden_states.dtype
35
+ hidden_states = hidden_states.to(torch.float32)
36
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
37
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
38
+ return self.weight * hidden_states.to(input_dtype)
39
+
40
+
41
+ class KirimRotaryEmbedding(nn.Module):
42
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
43
+ super().__init__()
44
+ self.dim = dim
45
+ self.max_position_embeddings = max_position_embeddings
46
+ self.base = base
47
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
48
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
49
+
50
+ @torch.no_grad()
51
+ def forward(self, x, seq_len=None):
52
+ if seq_len > self.max_position_embeddings:
53
+ base = self.base * ((seq_len / self.max_position_embeddings) - 1) + 1
54
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(x.device) / self.dim))
55
+ else:
56
+ inv_freq = self.inv_freq
57
+
58
+ t = torch.arange(seq_len, device=x.device, dtype=inv_freq.dtype)
59
+ freqs = torch.einsum("i,j->ij", t, inv_freq)
60
+ emb = torch.cat((freqs, freqs), dim=-1)
61
+ return emb.cos().to(dtype=x.dtype), emb.sin().to(dtype=x.dtype)
62
+
63
+
64
+ def rotate_half(x):
65
+ x1 = x[..., : x.shape[-1] // 2]
66
+ x2 = x[..., x.shape[-1] // 2 :]
67
+ return torch.cat((-x2, x1), dim=-1)
68
+
69
+
70
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
71
+ cos = cos[position_ids].unsqueeze(1)
72
+ sin = sin[position_ids].unsqueeze(1)
73
+ q_embed = (q * cos) + (rotate_half(q) * sin)
74
+ k_embed = (k * cos) + (rotate_half(k) * sin)
75
+ return q_embed, k_embed
76
+
77
+
78
+ class KirimMLP(nn.Module):
79
+ def __init__(self, config):
80
+ super().__init__()
81
+ self.config = config
82
+ self.hidden_size = config.hidden_size
83
+ self.intermediate_size = config.intermediate_size
84
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
85
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
86
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
87
+ self.act_fn = ACT2FN[config.hidden_act]
88
+
89
+ def forward(self, x):
90
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
91
+
92
+
93
+ class KirimAttention(nn.Module):
94
+ def __init__(self, config: KirimConfig, layer_idx: Optional[int] = None):
95
+ super().__init__()
96
+ self.config = config
97
+ self.layer_idx = layer_idx
98
+ self.hidden_size = config.hidden_size
99
+ self.num_heads = config.num_attention_heads
100
+ self.head_dim = self.hidden_size // self.num_heads
101
+ self.num_key_value_heads = config.num_key_value_heads
102
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
103
+ self.max_position_embeddings = config.max_position_embeddings
104
+ self.rope_theta = config.rope_theta
105
+
106
+ if (self.head_dim * self.num_heads) != self.hidden_size:
107
+ raise ValueError(
108
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
109
+ f" and `num_heads`: {self.num_heads})."
110
+ )
111
+
112
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
113
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
114
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
115
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
116
+
117
+ self.rotary_emb = KirimRotaryEmbedding(
118
+ self.head_dim,
119
+ max_position_embeddings=self.max_position_embeddings,
120
+ base=self.rope_theta,
121
+ )
122
+
123
+ def forward(
124
+ self,
125
+ hidden_states: torch.Tensor,
126
+ attention_mask: Optional[torch.Tensor] = None,
127
+ position_ids: Optional[torch.LongTensor] = None,
128
+ past_key_value: Optional[Cache] = None,
129
+ output_attentions: bool = False,
130
+ use_cache: bool = False,
131
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
132
+ bsz, q_len, _ = hidden_states.size()
133
+
134
+ query_states = self.q_proj(hidden_states)
135
+ key_states = self.k_proj(hidden_states)
136
+ value_states = self.v_proj(hidden_states)
137
+
138
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
139
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
140
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
141
+
142
+ kv_seq_len = key_states.shape[-2]
143
+ if past_key_value is not None:
144
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
145
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
146
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
147
+
148
+ if past_key_value is not None:
149
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
150
+
151
+ key_states = key_states.repeat_interleave(self.num_key_value_groups, dim=1)
152
+ value_states = value_states.repeat_interleave(self.num_key_value_groups, dim=1)
153
+
154
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
155
+
156
+ if attention_mask is not None:
157
+ attn_weights = attn_weights + attention_mask
158
+
159
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
160
+ attn_output = torch.matmul(attn_weights, value_states)
161
+
162
+ attn_output = attn_output.transpose(1, 2).contiguous()
163
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
164
+ attn_output = self.o_proj(attn_output)
165
+
166
+ return attn_output, attn_weights if output_attentions else None, past_key_value
167
+
168
+
169
+ class KirimDecoderLayer(nn.Module):
170
+ def __init__(self, config: KirimConfig, layer_idx: int):
171
+ super().__init__()
172
+ self.hidden_size = config.hidden_size
173
+ self.self_attn = KirimAttention(config=config, layer_idx=layer_idx)
174
+ self.mlp = KirimMLP(config)
175
+ self.input_layernorm = KirimRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
176
+ self.post_attention_layernorm = KirimRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
177
+
178
+ def forward(
179
+ self,
180
+ hidden_states: torch.Tensor,
181
+ attention_mask: Optional[torch.Tensor] = None,
182
+ position_ids: Optional[torch.LongTensor] = None,
183
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
184
+ output_attentions: Optional[bool] = False,
185
+ use_cache: Optional[bool] = False,
186
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
187
+ residual = hidden_states
188
+ hidden_states = self.input_layernorm(hidden_states)
189
+
190
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
191
+ hidden_states=hidden_states,
192
+ attention_mask=attention_mask,
193
+ position_ids=position_ids,
194
+ past_key_value=past_key_value,
195
+ output_attentions=output_attentions,
196
+ use_cache=use_cache,
197
+ )
198
+ hidden_states = residual + hidden_states
199
+
200
+ residual = hidden_states
201
+ hidden_states = self.post_attention_layernorm(hidden_states)
202
+ hidden_states = self.mlp(hidden_states)
203
+ hidden_states = residual + hidden_states
204
+
205
+ outputs = (hidden_states,)
206
+ if output_attentions:
207
+ outputs += (self_attn_weights,)
208
+ if use_cache:
209
+ outputs += (present_key_value,)
210
+
211
+ return outputs
212
+
213
+
214
+ class KirimPreTrainedModel(PreTrainedModel):
215
+ config_class = KirimConfig
216
+ base_model_prefix = "model"
217
+ supports_gradient_checkpointing = True
218
+ _no_split_modules = ["KirimDecoderLayer"]
219
+ _skip_keys_device_placement = "past_key_values"
220
+
221
+ def _init_weights(self, module):
222
+ std = self.config.initializer_range
223
+ if isinstance(module, nn.Linear):
224
+ module.weight.data.normal_(mean=0.0, std=std)
225
+ if module.bias is not None:
226
+ module.bias.data.zero_()
227
+ elif isinstance(module, nn.Embedding):
228
+ module.weight.data.normal_(mean=0.0, std=std)
229
+ if module.padding_idx is not None:
230
+ module.weight.data[module.padding_idx].zero_()
231
+
232
+
233
+ class KirimModel(KirimPreTrainedModel):
234
+ def __init__(self, config: KirimConfig):
235
+ super().__init__(config)
236
+ self.padding_idx = config.pad_token_id
237
+ self.vocab_size = config.vocab_size
238
+
239
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
240
+ self.layers = nn.ModuleList([KirimDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
241
+ self.norm = KirimRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
242
+
243
+ self.gradient_checkpointing = False
244
+ self.post_init()
245
+
246
+ def get_input_embeddings(self):
247
+ return self.embed_tokens
248
+
249
+ def set_input_embeddings(self, value):
250
+ self.embed_tokens = value
251
+
252
+ def forward(
253
+ self,
254
+ input_ids: torch.LongTensor = None,
255
+ attention_mask: Optional[torch.Tensor] = None,
256
+ position_ids: Optional[torch.LongTensor] = None,
257
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
258
+ inputs_embeds: Optional[torch.FloatTensor] = None,
259
+ use_cache: Optional[bool] = None,
260
+ output_attentions: Optional[bool] = None,
261
+ output_hidden_states: Optional[bool] = None,
262
+ return_dict: Optional[bool] = None,
263
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
264
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
265
+ output_hidden_states = (
266
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
267
+ )
268
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
269
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
270
+
271
+ if input_ids is not None and inputs_embeds is not None:
272
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
273
+ elif input_ids is not None:
274
+ batch_size, seq_length = input_ids.shape[:2]
275
+ elif inputs_embeds is not None:
276
+ batch_size, seq_length = inputs_embeds.shape[:2]
277
+ else:
278
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
279
+
280
+ past_key_values_length = 0
281
+ if past_key_values is not None:
282
+ past_key_values_length = past_key_values[0][0].shape[2]
283
+
284
+ if position_ids is None:
285
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
286
+ position_ids = torch.arange(
287
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
288
+ )
289
+ position_ids = position_ids.unsqueeze(0)
290
+
291
+ if inputs_embeds is None:
292
+ inputs_embeds = self.embed_tokens(input_ids)
293
+
294
+ attention_mask = _prepare_4d_causal_attention_mask(
295
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
296
+ )
297
+
298
+ hidden_states = inputs_embeds
299
+
300
+ all_hidden_states = () if output_hidden_states else None
301
+ all_self_attns = () if output_attentions else None
302
+ next_decoder_cache = () if use_cache else None
303
+
304
+ for idx, decoder_layer in enumerate(self.layers):
305
+ if output_hidden_states:
306
+ all_hidden_states += (hidden_states,)
307
+
308
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
309
+
310
+ if self.gradient_checkpointing and self.training:
311
+ layer_outputs = self._gradient_checkpointing_func(
312
+ decoder_layer.__call__,
313
+ hidden_states,
314
+ attention_mask,
315
+ position_ids,
316
+ past_key_value,
317
+ output_attentions,
318
+ use_cache,
319
+ )
320
+ else:
321
+ layer_outputs = decoder_layer(
322
+ hidden_states,
323
+ attention_mask=attention_mask,
324
+ position_ids=position_ids,
325
+ past_key_value=past_key_value,
326
+ output_attentions=output_attentions,
327
+ use_cache=use_cache,
328
+ )
329
+
330
+ hidden_states = layer_outputs[0]
331
+
332
+ if use_cache:
333
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
334
+
335
+ if output_attentions:
336
+ all_self_attns += (layer_outputs[1],)
337
+
338
+ hidden_states = self.norm(hidden_states)
339
+
340
+ if output_hidden_states:
341
+ all_hidden_states += (hidden_states,)
342
+
343
+ next_cache = next_decoder_cache if use_cache else None
344
+
345
+ if not return_dict:
346
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
347
+ return BaseModelOutputWithPast(
348
+ last_hidden_state=hidden_states,
349
+ past_key_values=next_cache,
350
+ hidden_states=all_hidden_states,
351
+ attentions=all_self_attns,
352
+ )
353
+
354
+
355
+ class KirimForCausalLM(KirimPreTrainedModel):
356
+ _tied_weights_keys = ["lm_head.weight"]
357
+
358
+ def __init__(self, config):
359
+ super().__init__(config)
360
+ self.model = KirimModel(config)
361
+ self.vocab_size = config.vocab_size
362
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
363
+
364
+ self.post_init()
365
+
366
+ def get_input_embeddings(self):
367
+ return self.model.embed_tokens
368
+
369
+ def set_input_embeddings(self, value):
370
+ self.model.embed_tokens = value
371
+
372
+ def get_output_embeddings(self):
373
+ return self.lm_head
374
+
375
+ def set_output_embeddings(self, new_embeddings):
376
+ self.lm_head = new_embeddings
377
+
378
+ def set_decoder(self, decoder):
379
+ self.model = decoder
380
+
381
+ def get_decoder(self):
382
+ return self.model
383
+
384
+ def forward(
385
+ self,
386
+ input_ids: torch.LongTensor = None,
387
+ attention_mask: Optional[torch.Tensor] = None,
388
+ position_ids: Optional[torch.LongTensor] = None,
389
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
390
+ inputs_embeds: Optional[torch.FloatTensor] = None,
391
+ labels: Optional[torch.LongTensor] = None,
392
+ use_cache: Optional[bool] = None,
393
+ output_attentions: Optional[bool] = None,
394
+ output_hidden_states: Optional[bool] = None,
395
+ return_dict: Optional[bool] = None,
396
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
397
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
398
+ output_hidden_states = (
399
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
400
+ )
401
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
402
+
403
+ outputs = self.model(
404
+ input_ids=input_ids,
405
+ attention_mask=attention_mask,
406
+ position_ids=position_ids,
407
+ past_key_values=past_key_values,
408
+ inputs_embeds=inputs_embeds,
409
+ use_cache=use_cache,
410
+ output_attentions=output_attentions,
411
+ output_hidden_states=output_hidden_states,
412
+ return_dict=return_dict,
413
+ )
414
+
415
+ hidden_states = outputs[0]
416
+ logits = self.lm_head(hidden_states)
417
+ logits = logits.float()
418
+
419
+ loss = None
420
+ if labels is not None:
421
+ shift_logits = logits[..., :-1, :].contiguous()
422
+ shift_labels = labels[..., 1:].contiguous()
423
+ loss_fct = CrossEntropyLoss()
424
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
425
+ shift_labels = shift_labels.view(-1)
426
+ shift_labels = shift_labels.to(shift_logits.device)
427
+ loss = loss_fct(shift_logits, shift_labels)
428
+
429
+ if not return_dict:
430
+ output = (logits,) + outputs[1:]
431
+ return (loss,) + output if loss is not None else output
432
+
433
+ return CausalLMOutputWithPast(
434
+ loss=loss,
435
+ logits=logits,
436
+ past_key_values=outputs.past_key_values,
437
+ hidden_states=outputs.hidden_states,
438
+ attentions=outputs.attentions,
439
+ )
440
+
441
+ def prepare_inputs_for_generation(
442
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
443
+ ):
444
+ if past_key_values is not None:
445
+ past_length = past_key_values[0][0].shape[2]
446
+ if input_ids.shape[1] > past_length:
447
+ remove_prefix_length = past_length
448
+ else:
449
+ remove_prefix_length = input_ids.shape[1] - 1
450
+ input_ids = input_ids[:, remove_prefix_length:]
451
+
452
+ position_ids = kwargs.get("position_ids", None)
453
+ if attention_mask is not None and position_ids is None:
454
+ position_ids = attention_mask.long().cumsum(-1) - 1
455
+ position_ids.masked_fill_(attention_mask == 0, 1)
456
+ if past_key_values:
457
+ position_ids = position_ids[:, -input_ids.shape[1] :]
458
+
459
+ if inputs_embeds is not None and past_key_values is None:
460
+ model_inputs = {"inputs_embeds": inputs_embeds}
461
+ else:
462
+ model_inputs = {"input_ids": input_ids}
463
+
464
+ model_inputs.update(
465
+ {
466
+ "position_ids": position_ids,
467
+ "past_key_values": past_key_values,
468
+ "use_cache": kwargs.get("use_cache"),
469
+ "attention_mask": attention_mask,
470
+ }
471
+ )
472
+ return model_inputs
473
+
474
+ @staticmethod
475
+ def _reorder_cache(past_key_values, beam_idx):
476
+ reordered_past = ()
477
+ for layer_past in past_key_values:
478
+ reordered_past += (
479
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
480
+ )
481
+ return reordered_past