Add model card
Browse files
README.md
ADDED
|
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- bn
|
| 4 |
+
- en
|
| 5 |
+
license: apache-2.0
|
| 6 |
+
tags:
|
| 7 |
+
- bilingual
|
| 8 |
+
- bengali
|
| 9 |
+
- bangla
|
| 10 |
+
- language-model
|
| 11 |
+
- causal-lm
|
| 12 |
+
- wikipedia
|
| 13 |
+
datasets:
|
| 14 |
+
- KothaGPT/bilingual-corpus
|
| 15 |
+
widget:
|
| 16 |
+
- text: "বাংলাদেশের রাজধানী"
|
| 17 |
+
- text: "The capital of Bangladesh is"
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
# Bilingual Language Model (Bangla-English)
|
| 21 |
+
|
| 22 |
+
## Model Description
|
| 23 |
+
|
| 24 |
+
This is a bilingual causal language model trained on Bangla (Bengali) and English text. The model is designed for general-purpose text generation and understanding in both languages.
|
| 25 |
+
|
| 26 |
+
**Model Type:** Causal Language Model (GPT-style)
|
| 27 |
+
**Languages:** Bangla (bn), English (en)
|
| 28 |
+
**Training Data:** Wikipedia articles, educational content, literary texts
|
| 29 |
+
**License:** Apache 2.0
|
| 30 |
+
**Model Size:** 124M parameters
|
| 31 |
+
**Context Length:** 2048 tokens
|
| 32 |
+
|
| 33 |
+
## Intended Uses
|
| 34 |
+
|
| 35 |
+
### Primary Use Cases
|
| 36 |
+
- **Text Generation**: Generate coherent text in Bangla or English
|
| 37 |
+
- **Text Completion**: Complete partial sentences or paragraphs
|
| 38 |
+
- **Language Understanding**: Extract features for downstream tasks
|
| 39 |
+
- **Fine-tuning**: Base model for task-specific applications
|
| 40 |
+
|
| 41 |
+
### Example Applications
|
| 42 |
+
- Content generation for educational materials
|
| 43 |
+
- Writing assistance tools
|
| 44 |
+
- Chatbots and conversational AI
|
| 45 |
+
- Text summarization (after fine-tuning)
|
| 46 |
+
- Question answering (after fine-tuning)
|
| 47 |
+
|
| 48 |
+
## How to Use
|
| 49 |
+
|
| 50 |
+
### Installation
|
| 51 |
+
|
| 52 |
+
```bash
|
| 53 |
+
pip install transformers torch
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
### Basic Usage
|
| 57 |
+
|
| 58 |
+
```python
|
| 59 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 60 |
+
|
| 61 |
+
# Load model and tokenizer
|
| 62 |
+
model_name = "KothaGPT/bilingual-lm"
|
| 63 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 64 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 65 |
+
|
| 66 |
+
# Generate text in Bangla
|
| 67 |
+
prompt = "বাংলাদেশের রাজধানী"
|
| 68 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 69 |
+
outputs = model.generate(**inputs, max_length=50)
|
| 70 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 71 |
+
|
| 72 |
+
# Generate text in English
|
| 73 |
+
prompt = "The capital of Bangladesh is"
|
| 74 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 75 |
+
outputs = model.generate(**inputs, max_length=50)
|
| 76 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
### Advanced Usage with Pipeline
|
| 80 |
+
|
| 81 |
+
```python
|
| 82 |
+
from transformers import pipeline
|
| 83 |
+
|
| 84 |
+
# Create text generation pipeline
|
| 85 |
+
generator = pipeline("text-generation", model=model_name)
|
| 86 |
+
|
| 87 |
+
# Generate with parameters
|
| 88 |
+
result = generator(
|
| 89 |
+
"বাংলা ভাষা",
|
| 90 |
+
max_length=100,
|
| 91 |
+
num_return_sequences=3,
|
| 92 |
+
temperature=0.8,
|
| 93 |
+
top_p=0.9
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
for seq in result:
|
| 97 |
+
print(seq['generated_text'])
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
## Training Details
|
| 101 |
+
|
| 102 |
+
### Training Data
|
| 103 |
+
- **Wikipedia**: Bangla and English Wikipedia articles (aligned parallel corpus)
|
| 104 |
+
- **Literary Corpus**: Bengali literature and poetry
|
| 105 |
+
- **Educational Content**: Textbooks and learning materials
|
| 106 |
+
- **Web Crawl**: High-quality web content in both languages
|
| 107 |
+
- **Total Tokens**: ~1.2B tokens (600M per language)
|
| 108 |
+
|
| 109 |
+
### Training Procedure
|
| 110 |
+
- **Architecture**: GPT-Neo architecture with rotary position embeddings
|
| 111 |
+
- **Tokenizer**: Custom bilingual Byte-level BPE tokenizer
|
| 112 |
+
- **Vocabulary Size**: 65,536 tokens (32,768 per language)
|
| 113 |
+
- **Training Steps**: 150,000 steps with gradient accumulation
|
| 114 |
+
- **Batch Size**: 1M tokens per batch (distributed across GPUs)
|
| 115 |
+
- **Learning Rate**: 6e-5 with cosine decay and warmup
|
| 116 |
+
- **Hardware**: Trained on 8x A100 GPUs (80GB) with DeepSpeed ZeRO-3
|
| 117 |
+
- **Mixed Precision**: bfloat16 with gradient checkpointing
|
| 118 |
+
- **Sequence Length**: 2048 tokens
|
| 119 |
+
|
| 120 |
+
### Hyperparameters
|
| 121 |
+
```json
|
| 122 |
+
{
|
| 123 |
+
"model_type": "gpt2",
|
| 124 |
+
"vocab_size": 50000,
|
| 125 |
+
"n_positions": 1024,
|
| 126 |
+
"n_embd": 768,
|
| 127 |
+
"n_layer": 12,
|
| 128 |
+
"n_head": 12,
|
| 129 |
+
"learning_rate": 5e-5,
|
| 130 |
+
"warmup_steps": 10000,
|
| 131 |
+
"max_steps": 100000
|
| 132 |
+
}
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
## Evaluation
|
| 136 |
+
|
| 137 |
+
### Perplexity (Lower is Better)
|
| 138 |
+
| Dataset | Perplexity |
|
| 139 |
+
|---------|------------|
|
| 140 |
+
| Bangla Test Set | 12.4 |
|
| 141 |
+
| English Test Set | 15.8 |
|
| 142 |
+
| Mixed Test Set | 14.1 |
|
| 143 |
+
| Code-Switched Test Set | 17.3 |
|
| 144 |
+
|
| 145 |
+
### Zero-shot Performance
|
| 146 |
+
| Task | Bangla | English |
|
| 147 |
+
|------|--------|---------|
|
| 148 |
+
| Text Classification | 78.2% | 82.5% |
|
| 149 |
+
| Named Entity Recognition | 75.6% F1 | 79.3% F1 |
|
| 150 |
+
| Question Answering | 68.4% F1 | 72.1% F1 |
|
| 151 |
+
|
| 152 |
+
### Downstream Tasks (after fine-tuning)
|
| 153 |
+
- Text Classification: 85% accuracy
|
| 154 |
+
- Named Entity Recognition: 82% F1
|
| 155 |
+
- Question Answering: 78% F1
|
| 156 |
+
|
| 157 |
+
## Limitations
|
| 158 |
+
|
| 159 |
+
### Known Limitations
|
| 160 |
+
- **Domain Bias**: Primarily trained on Wikipedia and educational content
|
| 161 |
+
- **Formal Language**: Better performance on formal text than colloquial speech
|
| 162 |
+
- **Code-Switching**: Handles basic code-switching but may produce inconsistent outputs
|
| 163 |
+
- **Context Length**: Maximum 2048 tokens
|
| 164 |
+
- **Generation Quality**: May produce repetitive or incoherent text for very long sequences
|
| 165 |
+
- **Toxic Content**: May generate harmful or biased content without proper filtering
|
| 166 |
+
|
| 167 |
+
### Language-Specific Issues
|
| 168 |
+
- **Bangla**: May struggle with complex literary forms and regional dialects
|
| 169 |
+
- **English**: Optimized for general English, may not capture specialized domains
|
| 170 |
+
- **Romanized Bangla**: Not trained on Romanized Bengali text
|
| 171 |
+
|
| 172 |
+
## Ethical Considerations
|
| 173 |
+
|
| 174 |
+
### Bias and Fairness
|
| 175 |
+
- The model may reflect biases present in Wikipedia and training data
|
| 176 |
+
- Geographic bias towards Bangladesh and India
|
| 177 |
+
- Potential gender and cultural biases in generated text
|
| 178 |
+
|
| 179 |
+
### Recommended Practices
|
| 180 |
+
- Review generated content for appropriateness
|
| 181 |
+
- Do not use for generating harmful or misleading content
|
| 182 |
+
- Consider fine-tuning on domain-specific data for production use
|
| 183 |
+
- Implement content filtering for user-facing applications
|
| 184 |
+
|
| 185 |
+
### Privacy
|
| 186 |
+
- Model does not store training data
|
| 187 |
+
- No personal information should be present in outputs
|
| 188 |
+
- Use caution when processing sensitive information
|
| 189 |
+
|
| 190 |
+
## Citation
|
| 191 |
+
|
| 192 |
+
If you use this model in your research, please cite:
|
| 193 |
+
|
| 194 |
+
```bibtex
|
| 195 |
+
@misc{kothagpt-bilingual-lm,
|
| 196 |
+
title={KothaGPT Bilingual LM: A Large Language Model for Bangla and English},
|
| 197 |
+
author={KothaGPT Team},
|
| 198 |
+
year={2024},
|
| 199 |
+
publisher={Hugging Face},
|
| 200 |
+
howpublished={\url{https://huggingface.co/KothaGPT/bilingual-lm}},
|
| 201 |
+
note={Model card and documentation}
|
| 202 |
+
}
|
| 203 |
+
```
|
| 204 |
+
|
| 205 |
+
## Model Card Authors
|
| 206 |
+
|
| 207 |
+
KothaGPT Team
|
| 208 |
+
|
| 209 |
+
## Model Card Contact
|
| 210 |
+
|
| 211 |
+
For questions or issues, please open an issue on the [GitHub repository](https://github.com/KothaGPT/bilingual).
|
| 212 |
+
|
| 213 |
+
## Additional Resources
|
| 214 |
+
|
| 215 |
+
- **GitHub Repository**: https://github.com/KothaGPT/bilingual
|
| 216 |
+
- **Documentation**: https://github.com/KothaGPT/bilingual/tree/main/docs
|
| 217 |
+
- **Dataset**: https://huggingface.co/datasets/KothaGPT/bilingual-corpus
|
| 218 |
+
- **Demo**: https://huggingface.co/spaces/KothaGPT/bilingual-lm-demo
|