File size: 22,646 Bytes
bdcf9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
---
base_model: sentence-transformers/all-roberta-large-v1
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6604
- loss:TripletLoss
widget:
- source_sentence: <s>moscow have repeatedly accuse the west of escalate hostility
    in ukraine state that no amount of foreign assistance will change the outcome
    of the fighting this suggest a pattern of provocative action and covert activity
    to undermine the effort of other party involve in the conflict the west allege
    manipulation of information and public perception through propaganda also raise
    question about its intention and motivation</s><s>the west</s><s>anger</s><s>disgust</s><s>fear</s>
  sentences:
  - Deceivers, manipulators, or propagandists who twist the truth, spread misinformation,
    and manipulate public perception for their own benefit. They undermine trust and
    truth.
  - Those involved in plots and secret plans, often working behind the scenes to undermine
    or deceive others. They engage in covert activities to achieve their goals.
  - Entities from other nations or regions creating geopolitical tension and acting
    against the interests of another country. They are often depicted as threats to
    national security. This is mostly in politics, not in CC.
- source_sentence: <s>conocophillip be accuse of lie about climate change risk alongside
    other big polluter include exxon chevron bp and shell in a lawsuit file by california
    attorney general the company be allege to have cause billion of dollar in damage
    and its action be criticize for contribute to the fossil fuel crisis and harm
    the planet</s><s>conocophillip</s><s>anger</s><s>disgust</s><s>fear</s>
  sentences:
  - Deceivers, manipulators, or propagandists who twist the truth, spread misinformation,
    and manipulate public perception for their own benefit. They undermine trust and
    truth.
  - Deceivers, manipulators, or propagandists who twist the truth, spread misinformation,
    and manipulate public perception for their own benefit. They undermine trust and
    truth.
  - Those involved in plots and secret plans, often working behind the scenes to undermine
    or deceive others. They engage in covert activities to achieve their goals.
- source_sentence: <s>scholz be of the imperialist leader who along with biden sunak
    and macron be engage in policy that be not simply the product of derange individual
    but of the profound crisis of world capitalism for which they have no rational
    progressive solution they see a global war for domination as the only way out
    drag the planet towards nuclear conflagration thus display a destructive and aggressive
    behavior consistent with the role of conflict initiator</s><s>scholz</s><s>anger</s><s>disgust</s>
  sentences:
  - ': Individuals or groups initiating conflict, often seen as the primary cause
    of tension and discord. They may provoke violence or unrest.'
  - Entities from other nations or regions creating geopolitical tension and acting
    against the interests of another country. They are often depicted as threats to
    national security. This is mostly in politics, not in CC.
  - Deceivers, manipulators, or propagandists who twist the truth, spread misinformation,
    and manipulate public perception for their own benefit. They undermine trust and
    truth.
- source_sentence: <s>stanislav petrov prevent a potential nuclear war by refuse to
    call moscow when he suspect it be a false alarm thus de escalate the situation
    he be subsequently fire due to his action be misinterpret as an overreaction rather
    than hail for his deep thinking and quick decision making in avoid a catastrophic
    event</s><s>stanislav petrov</s><s>anticipation</s>
  sentences:
  - Entities causing harm through ignorance, lack of skill, or incompetence. This
    includes people committing foolish acts or making poor decisions due to lack of
    understanding or expertise. Their actions, often unintentional, result in significant
    negative consequences.
  - Heroes or guardians who protect values or communities, ensuring safety and upholding
    justice. They often take on roles such as law enforcement officers, soldiers,
    or community leaders
  - Rebels, revolutionaries, or freedom fighters who challenge the status quo and
    fight for significant change or liberation from oppression. They are often seen
    as champions of justice and freedom.
- source_sentence: <s>shell be accuse of make scandalously vast war profit since putin
    strangle the oil supply this align with the definition of an antagonist specifically
    those involve in plot and secret plan to undermine other often work behind the
    scene to achieve their goal as they engage in covert activity to exploit the situation
    for personal gain</s><s>shell</s><s>anger</s><s>disgust</s>
  sentences:
  - Individuals or entities that engage in unethical or illegal activities for personal
    gain, prioritizing profit or power over ethics. This includes corrupt politicians,
    business leaders, and officials.
  - Those involved in plots and secret plans, often working behind the scenes to undermine
    or deceive others. They engage in covert activities to achieve their goals.
  - Spies or double agents accused of espionage, gathering and transmitting sensitive
    information to a rival or enemy. They operate in secrecy and deception. This is
    mostly in politics, not in CC.
---

# SentenceTransformer based on sentence-transformers/all-roberta-large-v1

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) <!-- at revision c8b9f2ae253aead6e2a51366aec92aef8c0ac969 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    '<s>shell be accuse of make scandalously vast war profit since putin strangle the oil supply this align with the definition of an antagonist specifically those involve in plot and secret plan to undermine other often work behind the scene to achieve their goal as they engage in covert activity to exploit the situation for personal gain</s><s>shell</s><s>anger</s><s>disgust</s>',
    'Individuals or entities that engage in unethical or illegal activities for personal gain, prioritizing profit or power over ethics. This includes corrupt politicians, business leaders, and officials.',
    'Spies or double agents accused of espionage, gathering and transmitting sensitive information to a rival or enemy. They operate in secrecy and deception. This is mostly in politics, not in CC.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 6,604 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                           | sentence_1                                                                         | sentence_2                                                                         |
  |:--------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                               | string                                                                             | string                                                                             |
  | details | <ul><li>min: 46 tokens</li><li>mean: 123.42 tokens</li><li>max: 212 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 37.92 tokens</li><li>max: 82 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 38.35 tokens</li><li>max: 82 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sentence_1                                                                                                                                                                                 | sentence_2                                                                                                                                                                                                                                                             |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code><s>the new york times be attempt to stoke climate alarm by claim vanilla be disappear due to climate change despite objective datum show vanilla production have double since and the current market be saturate with oversupply the article cite a cyclone that hit madagascar year ago as evidence of climate change impact on vanilla crop yet this event only cause a short term spike in price and current production level be actually lead to low price for farmer due to overproduction</s><s>the new york times</s><s>disgust</s></code>                                                                                                                                                                                                                                      | <code>Deceivers, manipulators, or propagandists who twist the truth, spread misinformation, and manipulate public perception for their own benefit. They undermine trust and truth.</code> | <code>: Individuals or groups initiating conflict, often seen as the primary cause of tension and discord. They may provoke violence or unrest.</code>                                                                                                                 |
  | <code><s>abigail disney be a liberal activist who have financially support climate activism effort through her contribution to organization such as climate emergency fund cef which channel money to group engage in climate activism notably she be mention alongside other influential individual and entity include former secretary of state hillary clinton onward together and oil heiress aileen getty aileen getty foundation as part of cef funding source this association underscore her role as a financier or supporter of action aim at promote a particular agenda through covert mean which align with the definition of those involve in plot and secret plan often work behind the scene to undermine or deceive other</s><s>abigail disney</s><s>anticipation</s></code> | <code>Those involved in plots and secret plans, often working behind the scenes to undermine or deceive others. They engage in covert activities to achieve their goals.</code>            | <code>Individuals who betray a cause or country, often seen as disloyal and treacherous. Their actions are viewed as a significant breach of trust. This is mostly in politics, not in CC.</code>                                                                      |
  | <code><s>greta thunberg be charge by sweden prosecution authority for disobey law enforcement during a climate protest in june potentially face fine or up to month imprisonment the charge stem from her involvement in a protest that allegedly cause significant traffic disruption and she refuse to obey police command to leave the scene additionally thunberg make a bold claim on twitter predict that humanity would end in if fossil fuel be not stop within year which be later describe as a conspiracy by some news outlet this context suggest that greta thunberg could be classify under role such as individual or group initiate conflict due to her action and prediction cause disruption and controversy</s><s>greta thunberg</s><s>anger</s><s>disgust</s></code>     | <code>: Individuals or groups initiating conflict, often seen as the primary cause of tension and discord. They may provoke violence or unrest.</code>                                     | <code>Terrorists, mercenaries, insurgents, fanatics, or extremists engaging in violence and terror to further ideological ends, often targeting civilians. They are viewed as significant threats to peace and security. This is mostly in politics, not in CC.</code> |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
  ```json
  {
      "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
      "triplet_margin": 5
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `num_train_epochs`: 6
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 6
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step | Training Loss |
|:------:|:----:|:-------------:|
| 0.6053 | 500  | 3.3315        |
| 1.2107 | 1000 | 1.8788        |
| 1.8160 | 1500 | 1.1392        |
| 2.4213 | 2000 | 0.663         |
| 3.0266 | 2500 | 0.4033        |
| 3.6320 | 3000 | 0.2263        |
| 4.2373 | 3500 | 0.1922        |
| 4.8426 | 4000 | 0.1112        |
| 5.4479 | 4500 | 0.1202        |


### Framework Versions
- Python: 3.9.20
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### TripletLoss
```bibtex
@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->