fix preprocessing
Browse files- .gitignore +3 -0
- exaonepath.py +31 -30
.gitignore
CHANGED
|
@@ -172,3 +172,6 @@ cython_debug/
|
|
| 172 |
|
| 173 |
# PyPI configuration file
|
| 174 |
.pypirc
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
# PyPI configuration file
|
| 174 |
.pypirc
|
| 175 |
+
|
| 176 |
+
# Project-specific files
|
| 177 |
+
test.py
|
exaonepath.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import math
|
| 2 |
import typing as t
|
|
|
|
| 3 |
|
| 4 |
import torch
|
| 5 |
import torch.nn as nn
|
|
@@ -22,7 +23,13 @@ if t.TYPE_CHECKING:
|
|
| 22 |
from _typeshed import StrPath
|
| 23 |
|
| 24 |
|
| 25 |
-
class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
def __init__(self, size: int, pad_value: float | None = None):
|
| 27 |
super().__init__()
|
| 28 |
self.size = size
|
|
@@ -44,32 +51,6 @@ class PadToDivisible(T.Transform):
|
|
| 44 |
return inpt
|
| 45 |
|
| 46 |
|
| 47 |
-
class Preprocessing(T.Transform):
|
| 48 |
-
def __init__(
|
| 49 |
-
self, small_tile_size_with_this_mpp: int, small_tile_size_with_target_mpp: int
|
| 50 |
-
):
|
| 51 |
-
self.small_tile_size_with_this_mpp = small_tile_size_with_this_mpp
|
| 52 |
-
self.small_tile_size_with_target_mpp = small_tile_size_with_target_mpp
|
| 53 |
-
|
| 54 |
-
def transform(self, inpt, params):
|
| 55 |
-
assert isinstance(inpt, torch.Tensor) and inpt.ndim >= 3
|
| 56 |
-
|
| 57 |
-
# Scale the input tensor to the target MPP
|
| 58 |
-
if self.small_tile_size_with_this_mpp != self.small_tile_size_with_target_mpp:
|
| 59 |
-
inpt = TF.resize(
|
| 60 |
-
inpt,
|
| 61 |
-
[
|
| 62 |
-
self.small_tile_size_with_target_mpp,
|
| 63 |
-
self.small_tile_size_with_target_mpp,
|
| 64 |
-
],
|
| 65 |
-
)
|
| 66 |
-
|
| 67 |
-
# Normalize the input tensor
|
| 68 |
-
inpt = scale_and_normalize(inpt)
|
| 69 |
-
|
| 70 |
-
return inpt
|
| 71 |
-
|
| 72 |
-
|
| 73 |
class EXAONEPathV20(nn.Module, PyTorchModelHubMixin):
|
| 74 |
def __init__(
|
| 75 |
self,
|
|
@@ -103,7 +84,8 @@ class EXAONEPathV20(nn.Module, PyTorchModelHubMixin):
|
|
| 103 |
self.model_first_stg,
|
| 104 |
small_tiles,
|
| 105 |
batch_size_on_gpu=first_stg_batch_size,
|
| 106 |
-
preproc_fn=
|
|
|
|
| 107 |
small_tile_size_with_this_mpp=small_tile_size,
|
| 108 |
small_tile_size_with_target_mpp=self.small_tile_size,
|
| 109 |
),
|
|
@@ -111,14 +93,14 @@ class EXAONEPathV20(nn.Module, PyTorchModelHubMixin):
|
|
| 111 |
out_device=self.device,
|
| 112 |
dtype=torch.bfloat16,
|
| 113 |
)
|
| 114 |
-
|
| 115 |
act1,
|
| 116 |
height=height,
|
| 117 |
width=width,
|
| 118 |
small_tile_size=small_tile_size,
|
| 119 |
large_tile_size=large_tile_size,
|
| 120 |
)
|
| 121 |
-
act2: torch.Tensor = self.model_second_stg(
|
| 122 |
act2_formatted = format_second_stg_act_as_third_stg_inp(
|
| 123 |
act2,
|
| 124 |
height=height,
|
|
@@ -126,6 +108,7 @@ class EXAONEPathV20(nn.Module, PyTorchModelHubMixin):
|
|
| 126 |
large_tile_size=large_tile_size,
|
| 127 |
)
|
| 128 |
act3: torch.Tensor = self.model_third_stg(act2_formatted)
|
|
|
|
| 129 |
return act1[is_tile_valid], act2, act3
|
| 130 |
|
| 131 |
def _load_wsi(self, svs_path: "StrPath", target_mpp: float):
|
|
@@ -163,3 +146,21 @@ class EXAONEPathV20(nn.Module, PyTorchModelHubMixin):
|
|
| 163 |
is_tile_valid = mask_tile.sum(dim=(1, 2)) > 0
|
| 164 |
|
| 165 |
return x, is_tile_valid, padded_size, small_tile_size, large_tile_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import math
|
| 2 |
import typing as t
|
| 3 |
+
from functools import partial
|
| 4 |
|
| 5 |
import torch
|
| 6 |
import torch.nn as nn
|
|
|
|
| 23 |
from _typeshed import StrPath
|
| 24 |
|
| 25 |
|
| 26 |
+
class Transform(T.Transform):
|
| 27 |
+
# For compatibility with torchvision <= 0.20
|
| 28 |
+
def _transform(self, inpt, params):
|
| 29 |
+
return self.transform(inpt, params)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class PadToDivisible(Transform):
|
| 33 |
def __init__(self, size: int, pad_value: float | None = None):
|
| 34 |
super().__init__()
|
| 35 |
self.size = size
|
|
|
|
| 51 |
return inpt
|
| 52 |
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
class EXAONEPathV20(nn.Module, PyTorchModelHubMixin):
|
| 55 |
def __init__(
|
| 56 |
self,
|
|
|
|
| 84 |
self.model_first_stg,
|
| 85 |
small_tiles,
|
| 86 |
batch_size_on_gpu=first_stg_batch_size,
|
| 87 |
+
preproc_fn=partial(
|
| 88 |
+
_preproc,
|
| 89 |
small_tile_size_with_this_mpp=small_tile_size,
|
| 90 |
small_tile_size_with_target_mpp=self.small_tile_size,
|
| 91 |
),
|
|
|
|
| 93 |
out_device=self.device,
|
| 94 |
dtype=torch.bfloat16,
|
| 95 |
)
|
| 96 |
+
act1_formatted = format_first_stg_act_as_second_stg_inp(
|
| 97 |
act1,
|
| 98 |
height=height,
|
| 99 |
width=width,
|
| 100 |
small_tile_size=small_tile_size,
|
| 101 |
large_tile_size=large_tile_size,
|
| 102 |
)
|
| 103 |
+
act2: torch.Tensor = self.model_second_stg(act1_formatted)
|
| 104 |
act2_formatted = format_second_stg_act_as_third_stg_inp(
|
| 105 |
act2,
|
| 106 |
height=height,
|
|
|
|
| 108 |
large_tile_size=large_tile_size,
|
| 109 |
)
|
| 110 |
act3: torch.Tensor = self.model_third_stg(act2_formatted)
|
| 111 |
+
|
| 112 |
return act1[is_tile_valid], act2, act3
|
| 113 |
|
| 114 |
def _load_wsi(self, svs_path: "StrPath", target_mpp: float):
|
|
|
|
| 146 |
is_tile_valid = mask_tile.sum(dim=(1, 2)) > 0
|
| 147 |
|
| 148 |
return x, is_tile_valid, padded_size, small_tile_size, large_tile_size
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def _preproc(
|
| 152 |
+
x: torch.Tensor,
|
| 153 |
+
small_tile_size_with_this_mpp: int,
|
| 154 |
+
small_tile_size_with_target_mpp: int,
|
| 155 |
+
):
|
| 156 |
+
# Scale the input tensor to the target MPP
|
| 157 |
+
if small_tile_size_with_this_mpp != small_tile_size_with_target_mpp:
|
| 158 |
+
x = TF.resize(
|
| 159 |
+
x,
|
| 160 |
+
[small_tile_size_with_target_mpp, small_tile_size_with_target_mpp],
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
# Normalize the input tensor
|
| 164 |
+
x = scale_and_normalize(x)
|
| 165 |
+
|
| 166 |
+
return x
|