SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("LamaDiab/NewMiniLM-V27Data-256BATCH-SemanticEngine")
# Run inference
sentences = [
    'y earrings',
    'gold earrings',
    'marbella',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.8988, 0.2141],
#         [0.8988, 1.0000, 0.2453],
#         [0.2141, 0.2453, 1.0000]])

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.9703

Training Details

Training Dataset

Unnamed Dataset

  • Size: 790,823 training samples
  • Columns: anchor, positive, and itemCategory
  • Approximate statistics based on the first 1000 samples:
    anchor positive itemCategory
    type string string string
    details
    • min: 3 tokens
    • mean: 10.03 tokens
    • max: 105 tokens
    • min: 3 tokens
    • mean: 4.65 tokens
    • max: 95 tokens
    • min: 3 tokens
    • mean: 3.97 tokens
    • max: 11 tokens
  • Samples:
    anchor positive itemCategory
    jake jelly mania ys max jake candy sweet
    own crisp sweet sweet
    pencil case zipper surf floral petrol denim polyester pm 19454 office supplies pencil case
  • Loss: MultipleNegativesSymmetricRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 9,509 evaluation samples
  • Columns: anchor, positive, negative, and itemCategory
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative itemCategory
    type string string string string
    details
    • min: 3 tokens
    • mean: 9.63 tokens
    • max: 43 tokens
    • min: 3 tokens
    • mean: 6.43 tokens
    • max: 150 tokens
    • min: 3 tokens
    • mean: 9.48 tokens
    • max: 42 tokens
    • min: 3 tokens
    • mean: 3.86 tokens
    • max: 9 tokens
  • Samples:
    anchor positive negative itemCategory
    pilot mechanical pencil progrex h-127 - 0.7 mm progrex pencil jojo's journal pencil
    superior drawing marker -pen - set of 12 colors - 2 nib superior drawing marker timed feeding tray marker
    first person singular author: haruki murakami book sushi chicken shawerma literature and fiction
  • Loss: MultipleNegativesSymmetricRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • weight_decay: 0.001
  • num_train_epochs: 4
  • warmup_ratio: 0.2
  • fp16: True
  • dataloader_num_workers: 1
  • dataloader_prefetch_factor: 2
  • dataloader_persistent_workers: True
  • push_to_hub: True
  • hub_model_id: LamaDiab/NewMiniLM-V27Data-256BATCH-SemanticEngine
  • hub_strategy: all_checkpoints

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.001
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.2
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 1
  • dataloader_prefetch_factor: 2
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: True
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: LamaDiab/NewMiniLM-V27Data-256BATCH-SemanticEngine
  • hub_strategy: all_checkpoints
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss cosine_accuracy
0.0003 1 3.5189 - -
0.3236 1000 2.5841 0.5323 0.9526
0.6472 2000 1.5199 0.4736 0.9624
0.9709 3000 1.0615 0.4600 0.9608
1.2943 4000 1.1183 0.4375 0.9660
1.6177 5000 1.0372 0.4423 0.9657
1.9411 6000 0.9562 0.4302 0.9676
2.2646 7000 0.8554 0.4332 0.9668
2.5880 8000 0.812 0.4287 0.9671
2.9114 9000 0.7919 0.4297 0.9696
3.2348 10000 0.7476 0.4287 0.9685
3.5582 11000 0.7199 0.4245 0.9697
3.8816 12000 0.7133 0.4268 0.9703

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 5.1.2
  • Transformers: 4.53.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.9.0
  • Datasets: 4.4.1
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
34
Safetensors
Model size
22.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for LamaDiab/NewMiniLM-V27Data-256BATCH-SemanticEngine

Finetuned
(655)
this model

Evaluation results