---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:790823
- loss:MultipleNegativesSymmetricRankingLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: essence multi task concealer 15 natural nude
sentences:
- adidas men shower gel 3 in 1
- ' essence multi task concealer'
- face make-up
- source_sentence: chillax fluffy beanbag
sentences:
- ' fluffy beanbag'
- living room furniture
- 60410 fire rescue motorcycle v
- source_sentence: must kindergarten backpack mermazing 2 cases
sentences:
- bag
- school supplies
- sage navy blue
- source_sentence: yplus colored pencils 18 colors with plastic sharpener rainbow
pc 110440 px 1208
sentences:
- pencil
- ' pencils '
- canvas frame 100% cotton 420 gsm 5070 cm m b5312
- source_sentence: y earrings
sentences:
- marbella
- gold earrings
- earring
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: triplet
name: Triplet
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.9607740044593811
name: Cosine Accuracy
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("LamaDiab/NewMiniLM-V27Data-256BATCH-SemanticEngine")
# Run inference
sentences = [
'y earrings',
'gold earrings',
'marbella',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.8902, 0.4212],
# [0.8902, 1.0000, 0.4384],
# [0.4212, 0.4384, 1.0000]])
```
## Evaluation
### Metrics
#### Triplet
* Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9608** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 790,823 training samples
* Columns: anchor, positive, and itemCategory
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | itemCategory |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details |
jake jelly mania ys max | jake candy | sweet |
| own crisp | sweet | sweet |
| pencil case zipper surf floral petrol denim polyester pm 19454 | office supplies | pencil case |
* Loss: [MultipleNegativesSymmetricRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 9,509 evaluation samples
* Columns: anchor, positive, negative, and itemCategory
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative | itemCategory |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string | string | string |
| details | pilot mechanical pencil progrex h-127 - 0.7 mm | progrex pencil | jojo's journal | pencil |
| superior drawing marker -pen - set of 12 colors - 2 nib | superior drawing marker | timed feeding tray | marker |
| first person singular author: haruki murakami | book | sushi chicken shawerma | literature and fiction |
* Loss: [MultipleNegativesSymmetricRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `weight_decay`: 0.001
- `num_train_epochs`: 4
- `warmup_ratio`: 0.2
- `fp16`: True
- `dataloader_num_workers`: 1
- `dataloader_prefetch_factor`: 2
- `dataloader_persistent_workers`: True
- `push_to_hub`: True
- `hub_model_id`: LamaDiab/NewMiniLM-V27Data-256BATCH-SemanticEngine
- `hub_strategy`: all_checkpoints
#### All Hyperparameters