LRL
commited on
Commit
·
c808d93
1
Parent(s):
f45ad20
add quant.py
Browse files
quant.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import os
|
| 5 |
+
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
pretrained_model_dir = "/root/Yi-6B/"
|
| 9 |
+
quantized_model_dir = "/root/Yi-6B/quant/"
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
os.makedirs(quantized_model_dir, exist_ok=True)
|
| 13 |
+
def get_wikitext2(nsamples, seed, seqlen, model):
|
| 14 |
+
from datasets import load_dataset
|
| 15 |
+
|
| 16 |
+
traindata = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")
|
| 17 |
+
testdata = load_dataset("wikitext", "wikitext-2-raw-v1", split="test")
|
| 18 |
+
|
| 19 |
+
from transformers import AutoTokenizer
|
| 20 |
+
|
| 21 |
+
try:
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False)
|
| 23 |
+
except Exception:
|
| 24 |
+
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=True)
|
| 25 |
+
trainenc = tokenizer("\n\n".join(traindata["text"]), return_tensors="pt")
|
| 26 |
+
testenc = tokenizer("\n\n".join(testdata["text"]), return_tensors="pt")
|
| 27 |
+
|
| 28 |
+
import random
|
| 29 |
+
|
| 30 |
+
random.seed(seed)
|
| 31 |
+
np.random.seed(0)
|
| 32 |
+
torch.random.manual_seed(0)
|
| 33 |
+
|
| 34 |
+
traindataset = []
|
| 35 |
+
for _ in range(nsamples):
|
| 36 |
+
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
|
| 37 |
+
j = i + seqlen
|
| 38 |
+
inp = trainenc.input_ids[:, i:j]
|
| 39 |
+
attention_mask = torch.ones_like(inp)
|
| 40 |
+
traindataset.append({"input_ids": inp, "attention_mask": attention_mask})
|
| 41 |
+
return traindataset, testenc
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
@torch.no_grad()
|
| 45 |
+
def opt_eval(model, testenc, dev, seqlen=2048):
|
| 46 |
+
print("Evaluating ...")
|
| 47 |
+
|
| 48 |
+
testenc = testenc.input_ids
|
| 49 |
+
nsamples = testenc.numel() // seqlen
|
| 50 |
+
|
| 51 |
+
use_cache = model.config.use_cache
|
| 52 |
+
model.config.use_cache = False
|
| 53 |
+
layers = model.model.decoder.layers
|
| 54 |
+
|
| 55 |
+
model.model.decoder.embed_tokens = model.model.decoder.embed_tokens.to(dev)
|
| 56 |
+
model.model.decoder.embed_positions = model.model.decoder.embed_positions.to(dev)
|
| 57 |
+
if hasattr(model.model.decoder, "project_out") and model.model.decoder.project_out:
|
| 58 |
+
model.model.decoder.project_out = model.model.decoder.project_out.to(dev)
|
| 59 |
+
if hasattr(model.model.decoder, "project_in") and model.model.decoder.project_in:
|
| 60 |
+
model.model.decoder.project_in = model.model.decoder.project_in.to(dev)
|
| 61 |
+
layers[0] = layers[0].to(dev)
|
| 62 |
+
|
| 63 |
+
dtype = next(iter(model.parameters())).dtype
|
| 64 |
+
inps = torch.zeros((nsamples, seqlen, model.config.hidden_size), dtype=dtype, device=dev)
|
| 65 |
+
cache = {"i": 0, "attention_mask": None}
|
| 66 |
+
|
| 67 |
+
class Catcher(nn.Module):
|
| 68 |
+
def __init__(self, module):
|
| 69 |
+
super().__init__()
|
| 70 |
+
self.module = module
|
| 71 |
+
|
| 72 |
+
def forward(self, inp, **kwargs):
|
| 73 |
+
inps[cache["i"]] = inp
|
| 74 |
+
cache["i"] += 1
|
| 75 |
+
cache["attention_mask"] = kwargs["attention_mask"]
|
| 76 |
+
raise ValueError
|
| 77 |
+
|
| 78 |
+
layers[0] = Catcher(layers[0])
|
| 79 |
+
for i in range(nsamples):
|
| 80 |
+
batch = testenc[:, (i * seqlen) : ((i + 1) * seqlen)].to(dev)
|
| 81 |
+
try:
|
| 82 |
+
model(batch)
|
| 83 |
+
except ValueError:
|
| 84 |
+
pass
|
| 85 |
+
layers[0] = layers[0].module
|
| 86 |
+
|
| 87 |
+
layers[0] = layers[0].cpu()
|
| 88 |
+
model.model.decoder.embed_tokens = model.model.decoder.embed_tokens.cpu()
|
| 89 |
+
model.model.decoder.embed_positions = model.model.decoder.embed_positions.cpu()
|
| 90 |
+
if hasattr(model.model.decoder, "project_out") and model.model.decoder.project_out:
|
| 91 |
+
model.model.decoder.project_out = model.model.decoder.project_out.cpu()
|
| 92 |
+
if hasattr(model.model.decoder, "project_in") and model.model.decoder.project_in:
|
| 93 |
+
model.model.decoder.project_in = model.model.decoder.project_in.cpu()
|
| 94 |
+
torch.cuda.empty_cache()
|
| 95 |
+
|
| 96 |
+
outs = torch.zeros_like(inps)
|
| 97 |
+
attention_mask = cache["attention_mask"]
|
| 98 |
+
|
| 99 |
+
for i in range(len(layers)):
|
| 100 |
+
print(i)
|
| 101 |
+
layer = layers[i].to(dev)
|
| 102 |
+
|
| 103 |
+
for j in range(nsamples):
|
| 104 |
+
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask)[0]
|
| 105 |
+
layers[i] = layer.cpu()
|
| 106 |
+
del layer
|
| 107 |
+
torch.cuda.empty_cache()
|
| 108 |
+
inps, outs = outs, inps
|
| 109 |
+
|
| 110 |
+
if model.model.decoder.final_layer_norm is not None:
|
| 111 |
+
model.model.decoder.final_layer_norm = model.model.decoder.final_layer_norm.to(dev)
|
| 112 |
+
if model.model.decoder.project_out is not None:
|
| 113 |
+
model.model.decoder.project_out = model.model.decoder.project_out.to(dev)
|
| 114 |
+
model.lm_head = model.lm_head.to(dev)
|
| 115 |
+
|
| 116 |
+
testenc = testenc.to(dev)
|
| 117 |
+
nlls = []
|
| 118 |
+
for i in range(nsamples):
|
| 119 |
+
hidden_states = inps[i].unsqueeze(0)
|
| 120 |
+
if model.model.decoder.final_layer_norm is not None:
|
| 121 |
+
hidden_states = model.model.decoder.final_layer_norm(hidden_states)
|
| 122 |
+
if model.model.decoder.project_out is not None:
|
| 123 |
+
hidden_states = model.model.decoder.project_out(hidden_states)
|
| 124 |
+
lm_logits = model.lm_head(hidden_states)
|
| 125 |
+
shift_logits = lm_logits[:, :-1, :].contiguous()
|
| 126 |
+
shift_labels = testenc[:, (i * seqlen) : ((i + 1) * seqlen)][:, 1:]
|
| 127 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 128 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
| 129 |
+
neg_log_likelihood = loss.float() * seqlen
|
| 130 |
+
nlls.append(neg_log_likelihood)
|
| 131 |
+
ppl = torch.exp(torch.stack(nlls).sum() / (nsamples * seqlen))
|
| 132 |
+
print(ppl.item())
|
| 133 |
+
|
| 134 |
+
model.config.use_cache = use_cache
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def main():
|
| 138 |
+
traindataset, testenc = get_wikitext2(128, 0, 2048, pretrained_model_dir)
|
| 139 |
+
|
| 140 |
+
quantize_config = BaseQuantizeConfig(
|
| 141 |
+
bits=4, # quantize model to 4-bit
|
| 142 |
+
group_size=128, # it is recommended to set the value to 128
|
| 143 |
+
desc_act=False, # desc_act and group size only works on triton
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
# load un-quantized model, the model will always be force loaded into cpu
|
| 147 |
+
model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config)
|
| 148 |
+
|
| 149 |
+
# quantize model, the examples should be list of dict whose keys can only be "input_ids" and "attention_mask"
|
| 150 |
+
# with value under torch.LongTensor type.
|
| 151 |
+
model.quantize(traindataset, use_triton=False)
|
| 152 |
+
|
| 153 |
+
# save quantized model
|
| 154 |
+
model.save_quantized(quantized_model_dir)
|
| 155 |
+
|
| 156 |
+
# save quantized model using safetensors
|
| 157 |
+
model.save_quantized(quantized_model_dir, use_safetensors=True)
|
| 158 |
+
|
| 159 |
+
# load quantized model, currently only support cpu or single gpu
|
| 160 |
+
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0", use_triton=False)
|
| 161 |
+
|
| 162 |
+
opt_eval(model.model, testenc, "cuda:0")
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
if __name__ == "__main__":
|
| 166 |
+
import logging
|
| 167 |
+
|
| 168 |
+
logging.basicConfig(
|
| 169 |
+
format="%(asctime)s %(levelname)s [%(name)s] %(message)s",
|
| 170 |
+
level=logging.INFO,
|
| 171 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
main()
|