rename wandb project name for train with unsloth .py
Browse files- train_with_unsloth.py +3 -3
train_with_unsloth.py
CHANGED
|
@@ -16,11 +16,11 @@ from transformers import EvalPrediction
|
|
| 16 |
PROJECT_NAME='SmolLM2-135M-Instruct-TaiwanChat'
|
| 17 |
BASE_MODEL_ID="HuggingFaceTB/SmolLM2-135M-Instruct"
|
| 18 |
DATASET_ID="yentinglin/TaiwanChat"
|
| 19 |
-
N_SAMPLES=
|
| 20 |
MAX_LEN=256
|
| 21 |
|
| 22 |
# Tell wandb which project to use, and that you want to log your model
|
| 23 |
-
os.environ["WANDB_PROJECT"] = PROJECT_NAME
|
| 24 |
os.environ["WANDB_LOG_MODEL"] = "end"
|
| 25 |
|
| 26 |
# Detect GPU Type
|
|
@@ -139,7 +139,7 @@ training_args = TrainingArguments(
|
|
| 139 |
# ─── W&B integration ───
|
| 140 |
logging_dir=f"{PROJECT_NAME}/logs", # where to store TensorBoard/W&B logs
|
| 141 |
report_to=["wandb"], # enable W&B reporting
|
| 142 |
-
run_name=PROJECT_NAME, # name this run in your W&B project
|
| 143 |
|
| 144 |
push_to_hub=True,
|
| 145 |
gradient_checkpointing=True,
|
|
|
|
| 16 |
PROJECT_NAME='SmolLM2-135M-Instruct-TaiwanChat'
|
| 17 |
BASE_MODEL_ID="HuggingFaceTB/SmolLM2-135M-Instruct"
|
| 18 |
DATASET_ID="yentinglin/TaiwanChat"
|
| 19 |
+
N_SAMPLES=40000
|
| 20 |
MAX_LEN=256
|
| 21 |
|
| 22 |
# Tell wandb which project to use, and that you want to log your model
|
| 23 |
+
os.environ["WANDB_PROJECT"] = f"{PROJECT_NAME}_CLOUD"
|
| 24 |
os.environ["WANDB_LOG_MODEL"] = "end"
|
| 25 |
|
| 26 |
# Detect GPU Type
|
|
|
|
| 139 |
# ─── W&B integration ───
|
| 140 |
logging_dir=f"{PROJECT_NAME}/logs", # where to store TensorBoard/W&B logs
|
| 141 |
report_to=["wandb"], # enable W&B reporting
|
| 142 |
+
run_name=f"{PROJECT_NAME}_CLOUD", # name this run in your W&B project
|
| 143 |
|
| 144 |
push_to_hub=True,
|
| 145 |
gradient_checkpointing=True,
|