Add padding and truncation on examples to fix max length
Browse files- train.py +28 -22
- train_with_unsloth.py +27 -22
train.py
CHANGED
|
@@ -12,7 +12,7 @@ from transformers.integrations import WandbCallback
|
|
| 12 |
PROJECT_NAME='SmolLM2-135M-Instruct-TaiwanChat'
|
| 13 |
BASE_MODEL_ID="HuggingFaceTB/SmolLM2-135M-Instruct"
|
| 14 |
DATASET_ID="yentinglin/TaiwanChat"
|
| 15 |
-
N_SAMPLES=
|
| 16 |
MAX_LEN=512
|
| 17 |
|
| 18 |
# Tell wandb which project to use, and that you want to log your model
|
|
@@ -38,38 +38,44 @@ dataset = load_dataset(DATASET_ID, split=f"train[:{N_SAMPLES}]")
|
|
| 38 |
|
| 39 |
def preprocess_examples(examples):
|
| 40 |
chats = examples["messages"]
|
| 41 |
-
# 1) Render
|
| 42 |
text = tokenizer.apply_chat_template(
|
| 43 |
-
chats,
|
| 44 |
-
tokenize=False,
|
| 45 |
-
add_generation_prompt=True
|
| 46 |
)
|
| 47 |
-
# 2) Tokenize
|
| 48 |
-
toks = tokenizer(text, truncation=True, max_length=MAX_LEN)
|
| 49 |
-
input_ids = toks["input_ids"]
|
| 50 |
-
attention_mask = toks["attention_mask"]
|
| 51 |
-
|
| 52 |
-
# 3) Build labels that mask all tokens _before_ the assistant turn
|
| 53 |
-
# so we only compute loss on the assistant’s response
|
| 54 |
-
# Find the index where the assistant prompt token <|im_start|>assistant occurs:
|
| 55 |
-
role_token_id = tokenizer.convert_tokens_to_ids("<|im_start|>assistant")
|
| 56 |
-
# find first occurrence
|
| 57 |
-
try:
|
| 58 |
-
idx = input_ids.index(role_token_id)
|
| 59 |
-
except ValueError:
|
| 60 |
-
idx = 0
|
| 61 |
-
# +2 to skip the role token and the following newline
|
| 62 |
-
start_of_reply = idx + 2
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
labels = [-100] * start_of_reply + input_ids[start_of_reply:]
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
return {
|
| 67 |
"input_ids": input_ids,
|
| 68 |
"attention_mask": attention_mask,
|
| 69 |
"labels": labels,
|
| 70 |
}
|
| 71 |
|
| 72 |
-
|
| 73 |
# Tokenization & Data Collator
|
| 74 |
tokenized_ds = dataset.map(
|
| 75 |
preprocess_examples,
|
|
|
|
| 12 |
PROJECT_NAME='SmolLM2-135M-Instruct-TaiwanChat'
|
| 13 |
BASE_MODEL_ID="HuggingFaceTB/SmolLM2-135M-Instruct"
|
| 14 |
DATASET_ID="yentinglin/TaiwanChat"
|
| 15 |
+
N_SAMPLES=100
|
| 16 |
MAX_LEN=512
|
| 17 |
|
| 18 |
# Tell wandb which project to use, and that you want to log your model
|
|
|
|
| 38 |
|
| 39 |
def preprocess_examples(examples):
|
| 40 |
chats = examples["messages"]
|
| 41 |
+
# 1) Render ChatML
|
| 42 |
text = tokenizer.apply_chat_template(
|
| 43 |
+
chats, tokenize=False, add_generation_prompt=True
|
|
|
|
|
|
|
| 44 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
# 2) Tokenize _and_ pad/truncate to MAX_LEN
|
| 47 |
+
toks = tokenizer(
|
| 48 |
+
text,
|
| 49 |
+
truncation=True,
|
| 50 |
+
padding="max_length",
|
| 51 |
+
max_length=MAX_LEN,
|
| 52 |
+
)
|
| 53 |
+
input_ids = toks["input_ids"]
|
| 54 |
+
attention_mask= toks["attention_mask"]
|
| 55 |
+
|
| 56 |
+
# 3) Find where the assistant reply starts
|
| 57 |
+
role_id = tokenizer.convert_tokens_to_ids("<|im_start|>assistant")
|
| 58 |
+
if role_id in input_ids:
|
| 59 |
+
idx = input_ids.index(role_id)
|
| 60 |
+
start_of_reply = idx + 2
|
| 61 |
+
else:
|
| 62 |
+
start_of_reply = 0
|
| 63 |
+
|
| 64 |
+
# 4) Build labels: -100 before reply, then copy the rest
|
| 65 |
labels = [-100] * start_of_reply + input_ids[start_of_reply:]
|
| 66 |
|
| 67 |
+
# 5) Pad or truncate labels to EXACTLY len(input_ids)
|
| 68 |
+
if len(labels) < len(input_ids):
|
| 69 |
+
labels += [-100] * (len(input_ids) - len(labels))
|
| 70 |
+
else:
|
| 71 |
+
labels = labels[: len(input_ids)]
|
| 72 |
+
|
| 73 |
return {
|
| 74 |
"input_ids": input_ids,
|
| 75 |
"attention_mask": attention_mask,
|
| 76 |
"labels": labels,
|
| 77 |
}
|
| 78 |
|
|
|
|
| 79 |
# Tokenization & Data Collator
|
| 80 |
tokenized_ds = dataset.map(
|
| 81 |
preprocess_examples,
|
train_with_unsloth.py
CHANGED
|
@@ -71,38 +71,43 @@ val_ds = splits["test"]
|
|
| 71 |
# Preprocessing Function
|
| 72 |
def preprocess_examples(examples):
|
| 73 |
chats = examples["messages"]
|
| 74 |
-
# 1) Render
|
| 75 |
text = tokenizer.apply_chat_template(
|
| 76 |
-
chats,
|
| 77 |
-
tokenize=False,
|
| 78 |
-
add_generation_prompt=True
|
| 79 |
)
|
| 80 |
-
# 2) Tokenize
|
| 81 |
-
toks = tokenizer(text, truncation=True, max_length=MAX_LEN)
|
| 82 |
-
input_ids = toks["input_ids"]
|
| 83 |
-
attention_mask = toks["attention_mask"]
|
| 84 |
-
|
| 85 |
-
# 3) Build labels that mask all tokens _before_ the assistant turn
|
| 86 |
-
# so we only compute loss on the assistant’s response
|
| 87 |
-
# Find the index where the assistant prompt token <|im_start|>assistant occurs:
|
| 88 |
-
role_token_id = tokenizer.convert_tokens_to_ids("<|im_start|>assistant")
|
| 89 |
-
# find first occurrence
|
| 90 |
-
try:
|
| 91 |
-
idx = input_ids.index(role_token_id)
|
| 92 |
-
except ValueError:
|
| 93 |
-
idx = 0
|
| 94 |
-
# +2 to skip the role token and the following newline
|
| 95 |
-
start_of_reply = idx + 2
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
labels = [-100] * start_of_reply + input_ids[start_of_reply:]
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
return {
|
| 100 |
"input_ids": input_ids,
|
| 101 |
"attention_mask": attention_mask,
|
| 102 |
"labels": labels,
|
| 103 |
}
|
| 104 |
-
|
| 105 |
-
|
| 106 |
# Tokenization & Data Collator
|
| 107 |
tokenized_train = train_ds.map(
|
| 108 |
preprocess_examples, batched=True, remove_columns=train_ds.column_names
|
|
|
|
| 71 |
# Preprocessing Function
|
| 72 |
def preprocess_examples(examples):
|
| 73 |
chats = examples["messages"]
|
| 74 |
+
# 1) Render ChatML
|
| 75 |
text = tokenizer.apply_chat_template(
|
| 76 |
+
chats, tokenize=False, add_generation_prompt=True
|
|
|
|
|
|
|
| 77 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
# 2) Tokenize _and_ pad/truncate to MAX_LEN
|
| 80 |
+
toks = tokenizer(
|
| 81 |
+
text,
|
| 82 |
+
truncation=True,
|
| 83 |
+
padding="max_length",
|
| 84 |
+
max_length=MAX_LEN,
|
| 85 |
+
)
|
| 86 |
+
input_ids = toks["input_ids"]
|
| 87 |
+
attention_mask= toks["attention_mask"]
|
| 88 |
+
|
| 89 |
+
# 3) Find where the assistant reply starts
|
| 90 |
+
role_id = tokenizer.convert_tokens_to_ids("<|im_start|>assistant")
|
| 91 |
+
if role_id in input_ids:
|
| 92 |
+
idx = input_ids.index(role_id)
|
| 93 |
+
start_of_reply = idx + 2
|
| 94 |
+
else:
|
| 95 |
+
start_of_reply = 0
|
| 96 |
+
|
| 97 |
+
# 4) Build labels: -100 before reply, then copy the rest
|
| 98 |
labels = [-100] * start_of_reply + input_ids[start_of_reply:]
|
| 99 |
|
| 100 |
+
# 5) Pad or truncate labels to EXACTLY len(input_ids)
|
| 101 |
+
if len(labels) < len(input_ids):
|
| 102 |
+
labels += [-100] * (len(input_ids) - len(labels))
|
| 103 |
+
else:
|
| 104 |
+
labels = labels[: len(input_ids)]
|
| 105 |
+
|
| 106 |
return {
|
| 107 |
"input_ids": input_ids,
|
| 108 |
"attention_mask": attention_mask,
|
| 109 |
"labels": labels,
|
| 110 |
}
|
|
|
|
|
|
|
| 111 |
# Tokenization & Data Collator
|
| 112 |
tokenized_train = train_ds.map(
|
| 113 |
preprocess_examples, batched=True, remove_columns=train_ds.column_names
|