Reduce memory usage
Browse files
train.py
CHANGED
|
@@ -7,14 +7,16 @@ from datasets import load_dataset
|
|
| 7 |
import torch
|
| 8 |
import os
|
| 9 |
import math
|
| 10 |
-
import wandb
|
| 11 |
from transformers.integrations import WandbCallback
|
| 12 |
|
| 13 |
PROJECT_NAME = 'SmolLM2-135M-Instruct-TaiwanChat'
|
| 14 |
BASE_MODEL_ID = "HuggingFaceTB/SmolLM2-135M-Instruct"
|
| 15 |
DATASET_ID = "yentinglin/TaiwanChat"
|
| 16 |
-
N_SAMPLES =
|
| 17 |
-
MAX_LEN =
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# Tell wandb which project to use, and that you want to log your model
|
| 20 |
os.environ["WANDB_PROJECT"] = f'{PROJECT_NAME}_LOCAL'
|
|
@@ -30,15 +32,31 @@ print(f'Device is {device_str}')
|
|
| 30 |
|
| 31 |
# Load Model & Tokenizer
|
| 32 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID)
|
| 33 |
-
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_ID)
|
| 34 |
-
model.to(device_str)
|
| 35 |
|
| 36 |
# Prepare the TaiwanChat Dataset
|
| 37 |
# Load and split into train/validation
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
# Preprocessing function
|
| 44 |
def preprocess_examples(examples):
|
|
@@ -78,24 +96,37 @@ def preprocess_examples(examples):
|
|
| 78 |
"attention_mask": attention_mask,
|
| 79 |
"labels": labels}
|
| 80 |
|
| 81 |
-
# Tokenize
|
| 82 |
-
tokenized_train =
|
| 83 |
-
preprocess_examples,
|
|
|
|
|
|
|
|
|
|
| 84 |
)
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
)
|
| 88 |
|
| 89 |
data_collator = DataCollatorForLanguageModeling(
|
| 90 |
tokenizer=tokenizer, mlm=False
|
| 91 |
)
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
# Define training arguments with evaluation
|
| 94 |
training_args = TrainingArguments(
|
|
|
|
| 95 |
output_dir=PROJECT_NAME,
|
| 96 |
-
per_device_train_batch_size=
|
| 97 |
learning_rate=5e-5,
|
| 98 |
-
num_train_epochs=
|
| 99 |
fp16=False if device_str == 'xpu' else True,
|
| 100 |
bf16=True if device_str == 'xpu' else False,
|
| 101 |
logging_steps=1000,
|
|
|
|
| 7 |
import torch
|
| 8 |
import os
|
| 9 |
import math
|
|
|
|
| 10 |
from transformers.integrations import WandbCallback
|
| 11 |
|
| 12 |
PROJECT_NAME = 'SmolLM2-135M-Instruct-TaiwanChat'
|
| 13 |
BASE_MODEL_ID = "HuggingFaceTB/SmolLM2-135M-Instruct"
|
| 14 |
DATASET_ID = "yentinglin/TaiwanChat"
|
| 15 |
+
N_SAMPLES = 9000
|
| 16 |
+
MAX_LEN = 512
|
| 17 |
+
VAL_FRACTION = 0.1
|
| 18 |
+
PER_DEVICE_TRAIN_BATCH_SIZE=1
|
| 19 |
+
NUM_TRAIN_EPOCHS=3
|
| 20 |
|
| 21 |
# Tell wandb which project to use, and that you want to log your model
|
| 22 |
os.environ["WANDB_PROJECT"] = f'{PROJECT_NAME}_LOCAL'
|
|
|
|
| 32 |
|
| 33 |
# Load Model & Tokenizer
|
| 34 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID)
|
| 35 |
+
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_ID, low_cpu_mem_usage=True )
|
| 36 |
+
model.to(device_str, dtype=torch.bfloat16 if device_str == 'xpu' else torch.float16)
|
| 37 |
|
| 38 |
# Prepare the TaiwanChat Dataset
|
| 39 |
# Load and split into train/validation
|
| 40 |
+
# 1) Load the raw train split as a stream
|
| 41 |
+
raw_stream = load_dataset(
|
| 42 |
+
DATASET_ID,
|
| 43 |
+
split="train", # no slicing here
|
| 44 |
+
streaming=True
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
# 2) (Optional) Shuffle the stream with a buffer
|
| 48 |
+
shuffled = raw_stream.shuffle(buffer_size=5_000, seed=42)
|
| 49 |
+
|
| 50 |
+
# 3) Take exactly N_SAMPLES examples
|
| 51 |
+
limited = shuffled.take(N_SAMPLES)
|
| 52 |
+
|
| 53 |
+
# 4) Split into train / validation
|
| 54 |
+
n_val = int(N_SAMPLES * VAL_FRACTION)
|
| 55 |
+
n_train = N_SAMPLES - n_val
|
| 56 |
+
|
| 57 |
+
train_stream = limited.take(n_train)
|
| 58 |
+
val_stream = limited.skip(n_train).take(n_val)
|
| 59 |
+
|
| 60 |
|
| 61 |
# Preprocessing function
|
| 62 |
def preprocess_examples(examples):
|
|
|
|
| 96 |
"attention_mask": attention_mask,
|
| 97 |
"labels": labels}
|
| 98 |
|
| 99 |
+
# 5) Tokenize on the fly with a small batch
|
| 100 |
+
tokenized_train = train_stream.map(
|
| 101 |
+
preprocess_examples,
|
| 102 |
+
batched=True,
|
| 103 |
+
batch_size=32, # controls RAM for each map() call
|
| 104 |
+
remove_columns=["messages"] # or whatever your raw column names are
|
| 105 |
)
|
| 106 |
+
|
| 107 |
+
tokenized_val = val_stream.map(
|
| 108 |
+
preprocess_examples,
|
| 109 |
+
batched=True,
|
| 110 |
+
batch_size=32,
|
| 111 |
+
remove_columns=["messages"]
|
| 112 |
)
|
| 113 |
|
| 114 |
data_collator = DataCollatorForLanguageModeling(
|
| 115 |
tokenizer=tokenizer, mlm=False
|
| 116 |
)
|
| 117 |
|
| 118 |
+
# 1) Compute steps_per_epoch from your constants:
|
| 119 |
+
steps_per_epoch = math.ceil(N_SAMPLES / PER_DEVICE_TRAIN_BATCH_SIZE)
|
| 120 |
+
total_steps = steps_per_epoch * NUM_TRAIN_EPOCHS
|
| 121 |
+
|
| 122 |
+
|
| 123 |
# Define training arguments with evaluation
|
| 124 |
training_args = TrainingArguments(
|
| 125 |
+
max_steps=total_steps,
|
| 126 |
output_dir=PROJECT_NAME,
|
| 127 |
+
per_device_train_batch_size=PER_DEVICE_TRAIN_BATCH_SIZE,
|
| 128 |
learning_rate=5e-5,
|
| 129 |
+
num_train_epochs=NUM_TRAIN_EPOCHS,
|
| 130 |
fp16=False if device_str == 'xpu' else True,
|
| 131 |
bf16=True if device_str == 'xpu' else False,
|
| 132 |
logging_steps=1000,
|