Add script to efficiently train with unsloth
Browse files- train_with_unsloth.py +142 -0
train_with_unsloth.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#! /usr/bin/env python3
|
| 2 |
+
import unsloth
|
| 3 |
+
from transformers import AutoTokenizer
|
| 4 |
+
from unsloth import FastLanguageModel
|
| 5 |
+
from transformers import DataCollatorForLanguageModeling
|
| 6 |
+
from transformers import TrainingArguments, Trainer
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
from datasets import load_dataset
|
| 9 |
+
import torch
|
| 10 |
+
import os
|
| 11 |
+
import wandb
|
| 12 |
+
from transformers.integrations import WandbCallback
|
| 13 |
+
|
| 14 |
+
PROJECT_NAME='SmolLM2-135M-Instruct-TaiwanChat'
|
| 15 |
+
BASE_MODEL_ID="HuggingFaceTB/SmolLM2-135M-Instruct"
|
| 16 |
+
DATASET_ID="yentinglin/TaiwanChat"
|
| 17 |
+
N_SAMPLES=-1
|
| 18 |
+
MAX_LEN=256
|
| 19 |
+
|
| 20 |
+
# Tell wandb which project to use, and that you want to log your model
|
| 21 |
+
os.environ["WANDB_PROJECT"] = PROJECT_NAME
|
| 22 |
+
os.environ["WANDB_LOG_MODEL"] = "end"
|
| 23 |
+
|
| 24 |
+
# Detect GPU Type
|
| 25 |
+
device_str='cpu'
|
| 26 |
+
if torch.xpu.is_available():
|
| 27 |
+
device_str='xpu'
|
| 28 |
+
elif torch.cuda.is_available():
|
| 29 |
+
device_str='cuda'
|
| 30 |
+
print(f'Device is {device_str}')
|
| 31 |
+
|
| 32 |
+
## Load with Unsloth’s optimized API
|
| 33 |
+
# 1) Load quantized model
|
| 34 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 35 |
+
model_name = BASE_MODEL_ID,
|
| 36 |
+
max_seq_length = MAX_LEN,
|
| 37 |
+
dtype = torch.float16,
|
| 38 |
+
load_in_4bit = True,
|
| 39 |
+
full_finetuning= False, # we will add LoRA adapters next
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
# 2) Prepare it for k‑bit training (sets up layer norms, disables caching, etc.)
|
| 43 |
+
from peft import prepare_model_for_kbit_training
|
| 44 |
+
model = prepare_model_for_kbit_training(model) # :contentReference[oaicite:0]{index=0}
|
| 45 |
+
|
| 46 |
+
# 3) Attach LoRA adapters on top of the quantized weights
|
| 47 |
+
from peft import LoraConfig, get_peft_model, TaskType
|
| 48 |
+
|
| 49 |
+
lora_config = LoraConfig(
|
| 50 |
+
r = 8, # low‑rank dimension
|
| 51 |
+
lora_alpha = 16, # scaling
|
| 52 |
+
target_modules = ["q_proj", "v_proj"], # apply to attention
|
| 53 |
+
bias = "none",
|
| 54 |
+
task_type = TaskType.CAUSAL_LM,
|
| 55 |
+
inference_mode = False,
|
| 56 |
+
)
|
| 57 |
+
model = get_peft_model(model, lora_config) # :contentReference[oaicite:1]{index=1}
|
| 58 |
+
|
| 59 |
+
# Now `model` has ~1–2% trainable parameters (the LoRA adapters),
|
| 60 |
+
# and Trainer will no longer throw the “purely quantized” error.
|
| 61 |
+
|
| 62 |
+
# Prepare the TaiwanChat Dataset
|
| 63 |
+
dataset = load_dataset(DATASET_ID, split=f"train[:{N_SAMPLES}]")
|
| 64 |
+
|
| 65 |
+
# Preprocessing Function
|
| 66 |
+
def preprocess_examples(examples):
|
| 67 |
+
# Each 'messages' entry is a list of {"role","content"} dicts
|
| 68 |
+
chats = examples["messages"]
|
| 69 |
+
# Render into a single string via ChatML template
|
| 70 |
+
text = tokenizer.apply_chat_template(chats, tokenize=False, add_generation_prompt=True)
|
| 71 |
+
# Tokenize with truncation
|
| 72 |
+
tokens = tokenizer(text, truncation=True, max_length=MAX_LEN)
|
| 73 |
+
return {"input_ids": tokens["input_ids"],
|
| 74 |
+
"attention_mask": tokens["attention_mask"]}
|
| 75 |
+
|
| 76 |
+
# Tokenization & Data Collator
|
| 77 |
+
tokenized_ds = dataset.map(
|
| 78 |
+
preprocess_examples,
|
| 79 |
+
batched=True,
|
| 80 |
+
remove_columns=dataset.column_names,
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
data_collator = DataCollatorForLanguageModeling(
|
| 84 |
+
tokenizer=tokenizer, mlm=False
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
training_args = TrainingArguments(
|
| 88 |
+
output_dir=PROJECT_NAME,
|
| 89 |
+
per_device_train_batch_size=1,
|
| 90 |
+
gradient_accumulation_steps = 16,
|
| 91 |
+
learning_rate=5e-5,
|
| 92 |
+
num_train_epochs=3,
|
| 93 |
+
fp16=False if device_str == 'xpu' else True,
|
| 94 |
+
bf16=True if device_str == 'xpu' else False,
|
| 95 |
+
logging_steps=1000,
|
| 96 |
+
save_steps=5000,
|
| 97 |
+
|
| 98 |
+
# ─── W&B integration ───
|
| 99 |
+
logging_dir=f"{PROJECT_NAME}/logs", # where to store TensorBoard/W&B logs
|
| 100 |
+
report_to=["wandb"], # enable W&B reporting
|
| 101 |
+
run_name=PROJECT_NAME, # name this run in your W&B project
|
| 102 |
+
|
| 103 |
+
push_to_hub=True,
|
| 104 |
+
gradient_checkpointing=True,
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
# Enable gradient checkpointing on the model
|
| 108 |
+
model.gradient_checkpointing_enable()
|
| 109 |
+
|
| 110 |
+
# Training with Trainer
|
| 111 |
+
trainer = Trainer(
|
| 112 |
+
model=model,
|
| 113 |
+
args=training_args,
|
| 114 |
+
train_dataset=tokenized_ds,
|
| 115 |
+
data_collator=data_collator,
|
| 116 |
+
callbacks=[WandbCallback], # ensure the W&B callback is attached
|
| 117 |
+
)
|
| 118 |
+
trainer.train(resume_from_checkpoint=False)
|
| 119 |
+
|
| 120 |
+
# Save Model & Tokenizer Locally
|
| 121 |
+
trainer.save_model(PROJECT_NAME)
|
| 122 |
+
trainer.push_to_hub(f'Luigi/{PROJECT_NAME}')
|
| 123 |
+
tokenizer.save_pretrained(PROJECT_NAME)
|
| 124 |
+
|
| 125 |
+
# 1) Load from local folder
|
| 126 |
+
model_dir = PROJECT_NAME
|
| 127 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
| 128 |
+
model = AutoModelForCausalLM.from_pretrained(model_dir) # loads your fine‑tuned weights :contentReference[oaicite:2]{index=2}
|
| 129 |
+
|
| 130 |
+
# Test Fine-tuned Model
|
| 131 |
+
hf_device = 0 if device_str in ("cuda","xpu") else -1
|
| 132 |
+
gen = pipeline(
|
| 133 |
+
"text-generation",
|
| 134 |
+
model=model,
|
| 135 |
+
tokenizer=tokenizer,
|
| 136 |
+
device=hf_device, # or device=0 for GPU
|
| 137 |
+
max_new_tokens=512, # customize as desired
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
prompt = "請問台北今天的天氣如何?"
|
| 141 |
+
output = gen(prompt, do_sample=True, temperature=0.8)
|
| 142 |
+
print(output[0]["generated_text"])
|