Add readme
Browse files
README.md
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: multilingual
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
## Multilingual-clip: XLM-Roberta-Large-Vit-L-14
|
| 6 |
+
|
| 7 |
+
Multilingual-CLIP extends OpenAI's English text encoders to multiple other languages. This model *only* contains the multilingual text encoder. The corresponding image model `ViT-L-14` can be retrieved via instructions found on OpenAI's [CLIP repository on Github](https://github.com/openai/CLIP). We provide a usage example below.
|
| 8 |
+
|
| 9 |
+
## Requirements
|
| 10 |
+
|
| 11 |
+
To use both the multilingual text encoder and corresponding image encoder, we need to install the packages [`multilingual-clip`](https://github.com/FreddeFrallan/Multilingual-CLIP) and [`clip`](https://github.com/openai/CLIP).
|
| 12 |
+
|
| 13 |
+
```
|
| 14 |
+
pip install multilingual-clip
|
| 15 |
+
pip install git+https://github.com/openai/CLIP.git
|
| 16 |
+
```
|
| 17 |
+
|
| 18 |
+
## Usage
|
| 19 |
+
|
| 20 |
+
Extracting embeddings from the text encoder can be done in the following way:
|
| 21 |
+
|
| 22 |
+
```python
|
| 23 |
+
from multilingual_clip import pt_multilingual_clip
|
| 24 |
+
import transformers
|
| 25 |
+
|
| 26 |
+
texts = [
|
| 27 |
+
'Three blind horses listening to Mozart.',
|
| 28 |
+
'Älgen är skogens konung!',
|
| 29 |
+
'Wie leben Eisbären in der Antarktis?',
|
| 30 |
+
'Вы знали, что все белые медведи левши?'
|
| 31 |
+
]
|
| 32 |
+
model_name = 'M-CLIP/XLM-Roberta-Large-Vit-L-14'
|
| 33 |
+
|
| 34 |
+
# Load Model & Tokenizer
|
| 35 |
+
model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_name)
|
| 36 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
| 37 |
+
|
| 38 |
+
embeddings = model.forward(texts, tokenizer)
|
| 39 |
+
print("Text features shape:", embeddings.shape)
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
Extracting embeddings from the corresponding image encoder:
|
| 43 |
+
|
| 44 |
+
```python
|
| 45 |
+
import torch
|
| 46 |
+
import clip
|
| 47 |
+
import requests
|
| 48 |
+
from PIL import Image
|
| 49 |
+
|
| 50 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 51 |
+
model, preprocess = clip.load("ViT-L/14", device=device)
|
| 52 |
+
|
| 53 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 54 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 55 |
+
image = preprocess(image).unsqueeze(0).to(device)
|
| 56 |
+
|
| 57 |
+
with torch.no_grad():
|
| 58 |
+
image_features = model.encode_image(image)
|
| 59 |
+
|
| 60 |
+
print("Image features shape:", image_features.shape)
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
## Evaluation results
|
| 64 |
+
|
| 65 |
+
None of the M-CLIP models have been extensivly evaluated, but testing them on Txt2Img retrieval on the humanly translated MS-COCO dataset, we see the following **R@10** results:
|
| 66 |
+
|
| 67 |
+
| Name | En | De | Es | Fr | Zh | It | Pl | Ko | Ru | Tr | Jp |
|
| 68 |
+
| ----------------------------------|:-----: |:-----: |:-----: |:-----: | :-----: |:-----: |:-----: |:-----: |:-----: |:-----: |:-----: |
|
| 69 |
+
| [OpenAI CLIP Vit-B/32](https://github.com/openai/CLIP)| 90.3 | - | - | - | - | - | - | - | - | - | - |
|
| 70 |
+
| [OpenAI CLIP Vit-L/14](https://github.com/openai/CLIP)| 91.8 | - | - | - | - | - | - | - | - | - | - |
|
| 71 |
+
| [OpenCLIP ViT-B-16+-](https://github.com/openai/CLIP)| 94.3 | - | - | - | - | - | - | - | - | - | - |
|
| 72 |
+
| [LABSE Vit-L/14](https://huggingface.co/M-CLIP/LABSE-Vit-L-14)| 91.6 | 89.6 | 89.5 | 89.9 | 88.9 | 90.1 | 89.8 | 80.8 | 85.5 | 89.8 | 73.9 |
|
| 73 |
+
| [XLM-R Large Vit-B/32](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-32)| 91.8 | 88.7 | 89.1 | 89.4 | 89.3 | 89.8| 91.4 | 82.1 | 86.1 | 88.8 | 81.0 |
|
| 74 |
+
| [XLM-R Vit-L/14](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-L-14)| 92.4 | 90.6 | 91.0 | 90.0 | 89.7 | 91.1 | 91.3 | 85.2 | 85.8 | 90.3 | 81.9 |
|
| 75 |
+
| [XLM-R Large Vit-B/16+](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-16Plus)| **95.0** | **93.0** | **93.6** | **93.1** | **94.0** | **93.1** | **94.4** | **89.0** | **90.0** | **93.0** | **84.2** |
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
## Training/Model details
|
| 79 |
+
|
| 80 |
+
Further details about the model training and data can be found in the [model card](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/larger_mclip.md).
|