herwoww commited on
Commit
4fc7b1e
·
verified ·
1 Parent(s): 6f2f48f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -156
README.md CHANGED
@@ -1,199 +1,135 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
11
 
12
- ## Model Details
13
-
14
  ### Model Description
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
100
 
101
- [More Information Needed]
102
 
103
- ## Evaluation
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
 
 
106
 
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
 
 
112
 
113
- [More Information Needed]
 
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
 
 
 
 
 
 
 
 
118
 
119
- [More Information Needed]
 
 
 
 
 
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
 
127
- ### Results
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
  ## Citation [optional]
172
 
173
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - asr
5
+ - arabic
6
+ license: mit
7
+ datasets:
8
+ - rsalshalan/MGB2
9
+ language:
10
+ - ar
11
+ base_model:
12
+ - microsoft/speecht5_asr
13
+ pipeline_tag: automatic-speech-recognition
14
  ---
15
 
16
+ # Model Card for ArTST_v2
17
 
18
+ # ArTST (ASR task)
19
 
20
+ ArTST model finetuned for automatic speech recognition (speech-to-text) on MGB2.
21
 
22
 
 
 
23
  ### Model Description
24
 
25
  <!-- Provide a longer summary of what this model is. -->
26
 
27
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
28
 
29
+ - **Developed by:** Speech Lab, MBZUAI
30
+ - **Model type:** SpeechT5
31
+ - **Language:** Arabic
32
+ - **Finetuned from:** (ArTST pretrained)[https://github.com/mbzuai-nlp/ArTST]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
  ## How to Get Started with the Model
36
 
37
+ ```python
38
+ import soundfile as sf
39
+ from transformers import (
40
+ SpeechT5Config,
41
+ SpeechT5FeatureExtractor,
42
+ SpeechT5ForSpeechToText,
43
+ SpeechT5Processor,
44
+ SpeechT5Tokenizer,
45
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
+ from custom_tokenizer import CustomTextTokenizer
48
 
49
+ device = "cuda" if torch.cuda.is_available() else "cpu"
50
 
51
+ tokenizer = SpeechT5Tokenizer.from_pretrained("mbzuai/artst_asr_v2")
52
+ processor = SpeechT5Processor.from_pretrained("mbzuai/artst_asr_v2" , tokenizer=tokenizer)
53
+ model = SpeechT5ForSpeechToText.from_pretrained("mbzuai/artst_asr_v2").to(device)
54
 
55
+ audio, sr = sf.read("audio.wav")
56
 
57
+ inputs = processor(audio=audio, sampling_rate=sr, return_tensors="pt")
58
+ predicted_ids = model.generate(**inputs.to(device), max_length=250)
59
 
60
+ transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
61
+ print(transcription[0])
62
+ ```
63
 
64
+ ## Usage with Pipeline
65
 
 
66
 
67
+ ```python
68
+ import torch
69
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
70
 
71
+ device = "cuda"
72
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
73
 
74
+ model_id = "MBZUAI/artst_asr_v2"
75
 
76
+ processor = AutoProcessor.from_pretrained(model_id)
77
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id).to(device)
78
+ pipe = pipeline(
79
+ "automatic-speech-recognition",
80
+ model=model,
81
+ tokenizer=processor.tokenizer,
82
+ feature_extractor=processor.feature_extractor,
83
+ torch_dtype=torch_dtype,
84
+ device=device,
85
+ )
86
 
87
+ audio , sr = sf.read("path/to/audio/file")
88
+ if sr != 16000:
89
+ audio = librosa.resample(np.array(example["audio"]['array']), orig_sr=sr, target_sr=16000)
90
+ result = pipe(audio)
91
+ print(result['text'])
92
+ ```
93
 
 
94
 
 
95
 
 
96
 
 
97
 
98
+ ### Model Sources [optional]
99
+ - **Repository:** [github](https://github.com/mbzuai-nlp/ArTST)
100
+ - **Paper :** [Arxiv](https://arxiv.org/abs/2411.05872)
101
+ <!-- - **Demo [optional]:** [More Information Needed] -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
 
 
103
 
104
  ## Citation [optional]
105
 
106
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
107
 
108
  **BibTeX:**
109
+ ```
110
+ @misc{djanibekov2024dialectalcoveragegeneralizationarabic,
111
+ title={Dialectal Coverage And Generalization in Arabic Speech Recognition},
112
+ author={Amirbek Djanibekov and Hawau Olamide Toyin and Raghad Alshalan and Abdullah Alitr and Hanan Aldarmaki},
113
+ year={2024},
114
+ eprint={2411.05872},
115
+ archivePrefix={arXiv},
116
+ primaryClass={cs.CL},
117
+ url={https://arxiv.org/abs/2411.05872},
118
+ }
119
+
120
+ @inproceedings{toyin-etal-2023-artst,
121
+ title = "{A}r{TST}: {A}rabic Text and Speech Transformer",
122
+ author = "Toyin, Hawau and
123
+ Djanibekov, Amirbek and
124
+ Kulkarni, Ajinkya and
125
+ Aldarmaki, Hanan",
126
+ booktitle = "Proceedings of ArabicNLP 2023",
127
+ month = dec,
128
+ year = "2023",
129
+ address = "Singapore (Hybrid)",
130
+ publisher = "Association for Computational Linguistics",
131
+ url = "https://aclanthology.org/2023.arabicnlp-1.5",
132
+ doi = "10.18653/v1/2023.arabicnlp-1.5",
133
+ pages = "41--51",
134
+ }
135
+ ```