Commit
·
aab2435
1
Parent(s):
453c9e0
upload model and code
Browse files- config.json +39 -0
- configuration_usad.py +66 -0
- model.safetensors +3 -0
- modeling_usad.py +19 -0
- usad_model.py +207 -0
- usad_modules.py +764 -0
config.json
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"USADModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout_p": 0.1,
|
| 6 |
+
"attention_type": "mhsa",
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_usad.USADConfig",
|
| 9 |
+
"AutoModel": "modeling_usad.USADModel"
|
| 10 |
+
},
|
| 11 |
+
"conv_dropout_p": 0.1,
|
| 12 |
+
"conv_expansion_factor": 2,
|
| 13 |
+
"conv_kernel_size": 31,
|
| 14 |
+
"conv_pos": true,
|
| 15 |
+
"conv_pos_depth": 5,
|
| 16 |
+
"conv_pos_groups": 16,
|
| 17 |
+
"conv_pos_width": 95,
|
| 18 |
+
"conv_subsample_channels": 64,
|
| 19 |
+
"conv_subsample_rate": 2,
|
| 20 |
+
"encoder_dim": 1024,
|
| 21 |
+
"feed_forward_dropout_p": 0.1,
|
| 22 |
+
"feed_forward_expansion_factor": 4,
|
| 23 |
+
"half_step_residual": true,
|
| 24 |
+
"input_dim": 128,
|
| 25 |
+
"input_dropout_p": 0.0,
|
| 26 |
+
"mamba_bidirectional": false,
|
| 27 |
+
"mamba_d_conv": 4,
|
| 28 |
+
"mamba_d_state": 16,
|
| 29 |
+
"mamba_expand": 2,
|
| 30 |
+
"model_type": "usad",
|
| 31 |
+
"num_attention_heads": 16,
|
| 32 |
+
"num_layers": 24,
|
| 33 |
+
"subsample_normalization": true,
|
| 34 |
+
"torch_dtype": "float32",
|
| 35 |
+
"transformer_style": true,
|
| 36 |
+
"transformers_version": "4.52.4",
|
| 37 |
+
"use_framewise_subsample": true,
|
| 38 |
+
"use_patchwise_subsample": false
|
| 39 |
+
}
|
configuration_usad.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class USADConfig(PretrainedConfig):
|
| 5 |
+
model_type = "usad"
|
| 6 |
+
|
| 7 |
+
def __init__(
|
| 8 |
+
self,
|
| 9 |
+
encoder_dim: int = 384,
|
| 10 |
+
num_layers: int = 12,
|
| 11 |
+
attention_type: str = "mhsa",
|
| 12 |
+
num_attention_heads: int = 6,
|
| 13 |
+
mamba_d_state: int = 16,
|
| 14 |
+
mamba_d_conv: int = 4,
|
| 15 |
+
mamba_expand: int = 2,
|
| 16 |
+
mamba_bidirectional: bool = False,
|
| 17 |
+
feed_forward_expansion_factor: int = 4,
|
| 18 |
+
conv_expansion_factor: int = 2,
|
| 19 |
+
feed_forward_dropout_p: float = 0.1,
|
| 20 |
+
attention_dropout_p: float = 0.1,
|
| 21 |
+
conv_dropout_p: float = 0.1,
|
| 22 |
+
conv_kernel_size: int = 31,
|
| 23 |
+
half_step_residual: bool = True,
|
| 24 |
+
transformer_style: bool = True,
|
| 25 |
+
use_framewise_subsample: bool = True,
|
| 26 |
+
use_patchwise_subsample: bool = False,
|
| 27 |
+
conv_subsample_channels: int = 64,
|
| 28 |
+
conv_subsample_rate: int = 2,
|
| 29 |
+
input_dim: int = 128,
|
| 30 |
+
input_dropout_p: float = 0.0,
|
| 31 |
+
conv_pos: bool = True,
|
| 32 |
+
conv_pos_depth: int = 5,
|
| 33 |
+
conv_pos_width: int = 95,
|
| 34 |
+
conv_pos_groups: int = 16,
|
| 35 |
+
subsample_normalization: bool = True,
|
| 36 |
+
**kwargs,
|
| 37 |
+
):
|
| 38 |
+
super().__init__(**kwargs)
|
| 39 |
+
|
| 40 |
+
self.encoder_dim = encoder_dim
|
| 41 |
+
self.num_layers = num_layers
|
| 42 |
+
self.attention_type = attention_type
|
| 43 |
+
self.num_attention_heads = num_attention_heads
|
| 44 |
+
self.mamba_d_state = mamba_d_state
|
| 45 |
+
self.mamba_d_conv = mamba_d_conv
|
| 46 |
+
self.mamba_expand = mamba_expand
|
| 47 |
+
self.mamba_bidirectional = mamba_bidirectional
|
| 48 |
+
self.feed_forward_expansion_factor = feed_forward_expansion_factor
|
| 49 |
+
self.conv_expansion_factor = conv_expansion_factor
|
| 50 |
+
self.feed_forward_dropout_p = feed_forward_dropout_p
|
| 51 |
+
self.attention_dropout_p = attention_dropout_p
|
| 52 |
+
self.conv_dropout_p = conv_dropout_p
|
| 53 |
+
self.conv_kernel_size = conv_kernel_size
|
| 54 |
+
self.half_step_residual = half_step_residual
|
| 55 |
+
self.transformer_style = transformer_style
|
| 56 |
+
self.use_framewise_subsample = use_framewise_subsample
|
| 57 |
+
self.use_patchwise_subsample = use_patchwise_subsample
|
| 58 |
+
self.conv_subsample_channels = conv_subsample_channels
|
| 59 |
+
self.conv_subsample_rate = conv_subsample_rate
|
| 60 |
+
self.input_dim = input_dim
|
| 61 |
+
self.input_dropout_p = input_dropout_p
|
| 62 |
+
self.conv_pos = conv_pos
|
| 63 |
+
self.conv_pos_depth = conv_pos_depth
|
| 64 |
+
self.conv_pos_width = conv_pos_width
|
| 65 |
+
self.conv_pos_groups = conv_pos_groups
|
| 66 |
+
self.subsample_normalization = subsample_normalization
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e5b8f98da245729082692545783647fdcd2164d0b144456249e9f8944e6e5fd6
|
| 3 |
+
size 1343582744
|
modeling_usad.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# modeling_usad.py
|
| 2 |
+
|
| 3 |
+
from transformers import PreTrainedModel
|
| 4 |
+
from .configuration_usad import USADConfig
|
| 5 |
+
from .usad_model import UsadModel as model
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class USADModel(PreTrainedModel):
|
| 9 |
+
config_class = USADConfig
|
| 10 |
+
|
| 11 |
+
def __init__(self, config: USADConfig):
|
| 12 |
+
super().__init__(config)
|
| 13 |
+
self.model = model(config)
|
| 14 |
+
|
| 15 |
+
def forward(self, *args, **kwargs):
|
| 16 |
+
return self.model(*args, **kwargs)
|
| 17 |
+
|
| 18 |
+
def load_audio(self, audio_path):
|
| 19 |
+
return self.model.load_audio(audio_path)
|
usad_model.py
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import make_dataclass
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torchaudio
|
| 5 |
+
from torch import nn
|
| 6 |
+
|
| 7 |
+
from .usad_modules import ConformerEncoder
|
| 8 |
+
|
| 9 |
+
MAX_MEL_LENGTH = 3000 # 30 seconds
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@torch.no_grad()
|
| 13 |
+
def wav_to_fbank(
|
| 14 |
+
wavs: torch.Tensor,
|
| 15 |
+
mel_dim: int = 128,
|
| 16 |
+
norm_mean: float = -4.268,
|
| 17 |
+
norm_std: float = 4.569,
|
| 18 |
+
) -> torch.Tensor:
|
| 19 |
+
"""Convert waveform to fbank features.
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
wavs (torch.Tensor): (B, T_wav) waveform tensor.
|
| 23 |
+
mel_dim (int, optional): mel dimension. Defaults to 128.
|
| 24 |
+
norm_mean (float, optional):
|
| 25 |
+
mean for normalization. Defaults to -4.268.
|
| 26 |
+
norm_std (float, optional):
|
| 27 |
+
std for normalization. Defaults to 4.569.
|
| 28 |
+
|
| 29 |
+
Returns:
|
| 30 |
+
torch.Tensor: (B, T_mel, mel_dim) fbank features.
|
| 31 |
+
"""
|
| 32 |
+
# ref: https://github.com/cwx-worst-one/EAT/tree/main/feature_extract
|
| 33 |
+
dtype = wavs.dtype
|
| 34 |
+
wavs = wavs.to(torch.float32)
|
| 35 |
+
wavs = wavs - wavs.mean(dim=-1, keepdim=True)
|
| 36 |
+
feats = [
|
| 37 |
+
torchaudio.compliance.kaldi.fbank(
|
| 38 |
+
wavs[i : i + 1],
|
| 39 |
+
htk_compat=True,
|
| 40 |
+
sample_frequency=16000,
|
| 41 |
+
use_energy=False,
|
| 42 |
+
window_type="hanning",
|
| 43 |
+
num_mel_bins=mel_dim,
|
| 44 |
+
dither=0.0,
|
| 45 |
+
frame_shift=10,
|
| 46 |
+
).to(dtype=dtype)
|
| 47 |
+
for i in range(wavs.shape[0])
|
| 48 |
+
]
|
| 49 |
+
|
| 50 |
+
mels = torch.stack(feats, dim=0)
|
| 51 |
+
mels = (mels - norm_mean) / (norm_std * 2)
|
| 52 |
+
|
| 53 |
+
return mels
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class UsadModel(nn.Module):
|
| 57 |
+
def __init__(self, cfg) -> None:
|
| 58 |
+
"""Initialize the UsadModel.
|
| 59 |
+
Args:
|
| 60 |
+
cfg: Configuration object containing model parameters.
|
| 61 |
+
"""
|
| 62 |
+
super().__init__()
|
| 63 |
+
|
| 64 |
+
self.cfg = cfg
|
| 65 |
+
self.encoder = ConformerEncoder(cfg)
|
| 66 |
+
self.max_mel_length = MAX_MEL_LENGTH
|
| 67 |
+
# NOTE: The max_mel_length is set to 3000,
|
| 68 |
+
# which corresponds to 30 seconds of audio at 100 Hz frame rate.
|
| 69 |
+
|
| 70 |
+
@property
|
| 71 |
+
def sample_rate(self) -> int:
|
| 72 |
+
return 16000 # Hz
|
| 73 |
+
|
| 74 |
+
@property
|
| 75 |
+
def encoder_frame_rate(self) -> int:
|
| 76 |
+
return 50 # Hz
|
| 77 |
+
|
| 78 |
+
@property
|
| 79 |
+
def mel_dim(self) -> int:
|
| 80 |
+
return self.cfg.input_dim
|
| 81 |
+
|
| 82 |
+
@property
|
| 83 |
+
def encoder_dim(self) -> int:
|
| 84 |
+
return self.cfg.encoder_dim
|
| 85 |
+
|
| 86 |
+
@property
|
| 87 |
+
def num_layers(self) -> int:
|
| 88 |
+
return self.cfg.num_layers
|
| 89 |
+
|
| 90 |
+
@property
|
| 91 |
+
def scene_embedding_size(self) -> int:
|
| 92 |
+
return self.cfg.encoder_dim * self.cfg.num_layers
|
| 93 |
+
|
| 94 |
+
@property
|
| 95 |
+
def timestamp_embedding_size(self) -> int:
|
| 96 |
+
return self.cfg.encoder_dim * self.cfg.num_layers
|
| 97 |
+
|
| 98 |
+
@property
|
| 99 |
+
def device(self) -> torch.device:
|
| 100 |
+
"""Get the device on which the model is located."""
|
| 101 |
+
return next(self.parameters()).device
|
| 102 |
+
|
| 103 |
+
def set_audio_chunk_size(self, seconds: float = 30.0) -> None:
|
| 104 |
+
"""Set the maximum chunk size for feature extraction.
|
| 105 |
+
|
| 106 |
+
Args:
|
| 107 |
+
seconds (float, optional): Chunk size in seconds. Defaults to 30.0.
|
| 108 |
+
"""
|
| 109 |
+
assert (
|
| 110 |
+
seconds >= 0.1
|
| 111 |
+
), f"Chunk size must be greater than 0.1s, got {seconds} seconds."
|
| 112 |
+
self.max_mel_length = int(seconds * 100) # 100 Hz frame rate
|
| 113 |
+
|
| 114 |
+
def load_audio(self, audio_path: str) -> torch.Tensor:
|
| 115 |
+
"""Load audio file and return waveform tensor.
|
| 116 |
+
Args:
|
| 117 |
+
audio_path (str): Path to the audio file.
|
| 118 |
+
|
| 119 |
+
Returns:
|
| 120 |
+
torch.Tensor: Waveform tensor of shape (wav_len,).
|
| 121 |
+
"""
|
| 122 |
+
|
| 123 |
+
waveform, sr = torchaudio.load(audio_path)
|
| 124 |
+
if sr != self.sample_rate:
|
| 125 |
+
waveform = torchaudio.functional.resample(waveform, sr, self.sample_rate)
|
| 126 |
+
if waveform.shape[0] > 1:
|
| 127 |
+
# If stereo, convert to mono by averaging channels
|
| 128 |
+
waveform = waveform.mean(dim=0, keepdim=True)
|
| 129 |
+
|
| 130 |
+
waveform = waveform.squeeze(0) # Remove channel dimension if mono
|
| 131 |
+
return waveform.to(self.device) # Ensure tensor is on the same device
|
| 132 |
+
|
| 133 |
+
def forward(
|
| 134 |
+
self,
|
| 135 |
+
wavs: torch.Tensor,
|
| 136 |
+
norm_mean: float = -4.268,
|
| 137 |
+
norm_std: float = 4.569,
|
| 138 |
+
) -> dict:
|
| 139 |
+
"""Forward pass for the model.
|
| 140 |
+
|
| 141 |
+
Args:
|
| 142 |
+
wavs (torch.Tensor):
|
| 143 |
+
Input waveform tensor of shape (batch_size, wav_len).
|
| 144 |
+
norm_mean (float, optional):
|
| 145 |
+
Mean for normalization. Defaults to -4.268.
|
| 146 |
+
norm_std (float, optional):
|
| 147 |
+
Standard deviation for normalization. Defaults to 4.569.
|
| 148 |
+
|
| 149 |
+
Returns:
|
| 150 |
+
dict: A dictionary containing the model's outputs.
|
| 151 |
+
"""
|
| 152 |
+
# wavs: (batch_size, wav_len)
|
| 153 |
+
|
| 154 |
+
mel = wav_to_fbank(wavs, norm_mean=norm_mean, norm_std=norm_std)
|
| 155 |
+
mel = mel[:, : mel.shape[1] - mel.shape[1] % 2]
|
| 156 |
+
if mel.shape[1] <= self.max_mel_length:
|
| 157 |
+
x, x_len, layer_results = self.encoder(mel, return_hidden=True)
|
| 158 |
+
|
| 159 |
+
result = {
|
| 160 |
+
"x": x,
|
| 161 |
+
"mel": mel,
|
| 162 |
+
"hidden_states": layer_results["hidden_states"],
|
| 163 |
+
"ffn": layer_results["ffn_1"],
|
| 164 |
+
}
|
| 165 |
+
return result
|
| 166 |
+
|
| 167 |
+
result = {
|
| 168 |
+
"x": [],
|
| 169 |
+
"mel": mel,
|
| 170 |
+
"hidden_states": [[] for _ in range(self.cfg.num_layers)],
|
| 171 |
+
"ffn": [[] for _ in range(self.cfg.num_layers)],
|
| 172 |
+
}
|
| 173 |
+
for i in range(0, mel.shape[1], self.max_mel_length):
|
| 174 |
+
if mel.shape[1] - i < 10:
|
| 175 |
+
break
|
| 176 |
+
|
| 177 |
+
x, x_len, layer_results = self.encoder(
|
| 178 |
+
mel[:, i : i + self.max_mel_length], return_hidden=True
|
| 179 |
+
)
|
| 180 |
+
result["x"].append(x)
|
| 181 |
+
for j in range(self.cfg.num_layers):
|
| 182 |
+
result["hidden_states"][j].append(layer_results["hidden_states"][j])
|
| 183 |
+
result["ffn"][j].append(layer_results["ffn_1"][j])
|
| 184 |
+
|
| 185 |
+
result["x"] = torch.cat(result["x"], dim=1)
|
| 186 |
+
for j in range(self.cfg.num_layers):
|
| 187 |
+
result["hidden_states"][j] = torch.cat(result["hidden_states"][j], dim=1)
|
| 188 |
+
result["ffn"][j] = torch.cat(result["ffn"][j], dim=1)
|
| 189 |
+
|
| 190 |
+
# result["x"]: model final output (batch_size, seq_len)
|
| 191 |
+
# result["mel"]: mel fbank (batch_size, seq_len * 2, mel_dim)
|
| 192 |
+
# result["hidden_states"]: List of (batch_size, seq_len, encoder_dim)
|
| 193 |
+
# result["ffn"]: List of (batch_size, seq_len, encoder_dim)
|
| 194 |
+
return result
|
| 195 |
+
|
| 196 |
+
@classmethod
|
| 197 |
+
def load_from_fairseq_ckpt(cls, ckpt_path: str):
|
| 198 |
+
checkpoint = torch.load(ckpt_path, weights_only=False)
|
| 199 |
+
config = checkpoint["cfg"]["model"]
|
| 200 |
+
config = make_dataclass("Config", config.keys())(**config)
|
| 201 |
+
model = cls(config)
|
| 202 |
+
state_dict = checkpoint["model"]
|
| 203 |
+
for k in list(state_dict.keys()):
|
| 204 |
+
if not k.startswith("encoder."):
|
| 205 |
+
del state_dict[k]
|
| 206 |
+
model.load_state_dict(state_dict, strict=True)
|
| 207 |
+
return model
|
usad_modules.py
ADDED
|
@@ -0,0 +1,764 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2021, Soohwan Kim. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import contextlib
|
| 16 |
+
import math
|
| 17 |
+
from collections import defaultdict
|
| 18 |
+
from typing import Dict, List, Optional, Tuple, Union
|
| 19 |
+
|
| 20 |
+
import torch
|
| 21 |
+
import torch.nn.functional as F
|
| 22 |
+
from torch import nn
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class SamePad(nn.Module):
|
| 26 |
+
def __init__(self, kernel_size, causal=False):
|
| 27 |
+
super().__init__()
|
| 28 |
+
if causal:
|
| 29 |
+
self.remove = kernel_size - 1
|
| 30 |
+
else:
|
| 31 |
+
self.remove = 1 if kernel_size % 2 == 0 else 0
|
| 32 |
+
|
| 33 |
+
def forward(self, x):
|
| 34 |
+
if self.remove > 0:
|
| 35 |
+
x = x[:, :, : -self.remove]
|
| 36 |
+
return x
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class TransposeLast(nn.Module):
|
| 40 |
+
def __init__(self, deconstruct_idx=None, tranpose_dim=-2):
|
| 41 |
+
super().__init__()
|
| 42 |
+
self.deconstruct_idx = deconstruct_idx
|
| 43 |
+
self.tranpose_dim = tranpose_dim
|
| 44 |
+
|
| 45 |
+
def forward(self, x):
|
| 46 |
+
if self.deconstruct_idx is not None:
|
| 47 |
+
x = x[self.deconstruct_idx]
|
| 48 |
+
return x.transpose(self.tranpose_dim, -1)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class Swish(nn.Module):
|
| 52 |
+
def __init__(self):
|
| 53 |
+
super(Swish, self).__init__()
|
| 54 |
+
|
| 55 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
| 56 |
+
return inputs * inputs.sigmoid()
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class GLU(nn.Module):
|
| 60 |
+
def __init__(self, dim: int) -> None:
|
| 61 |
+
super(GLU, self).__init__()
|
| 62 |
+
self.dim = dim
|
| 63 |
+
|
| 64 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
| 65 |
+
outputs, gate = inputs.chunk(2, dim=self.dim)
|
| 66 |
+
return outputs * gate.sigmoid()
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
class ResidualConnectionModule(nn.Module):
|
| 70 |
+
def __init__(
|
| 71 |
+
self,
|
| 72 |
+
module: nn.Module,
|
| 73 |
+
module_factor: float = 1.0,
|
| 74 |
+
input_factor: float = 1.0,
|
| 75 |
+
):
|
| 76 |
+
super(ResidualConnectionModule, self).__init__()
|
| 77 |
+
self.module = module
|
| 78 |
+
self.module_factor = module_factor
|
| 79 |
+
self.input_factor = input_factor
|
| 80 |
+
|
| 81 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
| 82 |
+
return (self.module(inputs) * self.module_factor) + (inputs * self.input_factor)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
class Linear(nn.Module):
|
| 86 |
+
def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None:
|
| 87 |
+
super(Linear, self).__init__()
|
| 88 |
+
self.linear = nn.Linear(in_features, out_features, bias=bias)
|
| 89 |
+
nn.init.xavier_uniform_(self.linear.weight)
|
| 90 |
+
if bias:
|
| 91 |
+
nn.init.zeros_(self.linear.bias)
|
| 92 |
+
|
| 93 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 94 |
+
return self.linear(x)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
class View(nn.Module):
|
| 98 |
+
def __init__(self, shape: tuple, contiguous: bool = False):
|
| 99 |
+
super(View, self).__init__()
|
| 100 |
+
self.shape = shape
|
| 101 |
+
self.contiguous = contiguous
|
| 102 |
+
|
| 103 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 104 |
+
if self.contiguous:
|
| 105 |
+
x = x.contiguous()
|
| 106 |
+
|
| 107 |
+
return x.view(*self.shape)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
class Transpose(nn.Module):
|
| 111 |
+
def __init__(self, shape: tuple):
|
| 112 |
+
super(Transpose, self).__init__()
|
| 113 |
+
self.shape = shape
|
| 114 |
+
|
| 115 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 116 |
+
return x.transpose(*self.shape)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
class FeedForwardModule(nn.Module):
|
| 120 |
+
def __init__(
|
| 121 |
+
self,
|
| 122 |
+
encoder_dim: int = 512,
|
| 123 |
+
expansion_factor: int = 4,
|
| 124 |
+
dropout_p: float = 0.1,
|
| 125 |
+
) -> None:
|
| 126 |
+
super(FeedForwardModule, self).__init__()
|
| 127 |
+
self.sequential = nn.Sequential(
|
| 128 |
+
nn.LayerNorm(encoder_dim),
|
| 129 |
+
Linear(encoder_dim, encoder_dim * expansion_factor, bias=True),
|
| 130 |
+
Swish(),
|
| 131 |
+
nn.Dropout(p=dropout_p),
|
| 132 |
+
Linear(encoder_dim * expansion_factor, encoder_dim, bias=True),
|
| 133 |
+
nn.Dropout(p=dropout_p),
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
| 137 |
+
return self.sequential(inputs)
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
class DepthwiseConv1d(nn.Module):
|
| 141 |
+
def __init__(
|
| 142 |
+
self,
|
| 143 |
+
in_channels: int,
|
| 144 |
+
out_channels: int,
|
| 145 |
+
kernel_size: int,
|
| 146 |
+
stride: int = 1,
|
| 147 |
+
padding: int = 0,
|
| 148 |
+
bias: bool = False,
|
| 149 |
+
) -> None:
|
| 150 |
+
super(DepthwiseConv1d, self).__init__()
|
| 151 |
+
assert (
|
| 152 |
+
out_channels % in_channels == 0
|
| 153 |
+
), "out_channels should be constant multiple of in_channels"
|
| 154 |
+
self.conv = nn.Conv1d(
|
| 155 |
+
in_channels=in_channels,
|
| 156 |
+
out_channels=out_channels,
|
| 157 |
+
kernel_size=kernel_size,
|
| 158 |
+
groups=in_channels,
|
| 159 |
+
stride=stride,
|
| 160 |
+
padding=padding,
|
| 161 |
+
bias=bias,
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
| 165 |
+
return self.conv(inputs)
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
class PointwiseConv1d(nn.Module):
|
| 169 |
+
def __init__(
|
| 170 |
+
self,
|
| 171 |
+
in_channels: int,
|
| 172 |
+
out_channels: int,
|
| 173 |
+
stride: int = 1,
|
| 174 |
+
padding: int = 0,
|
| 175 |
+
bias: bool = True,
|
| 176 |
+
) -> None:
|
| 177 |
+
super(PointwiseConv1d, self).__init__()
|
| 178 |
+
self.conv = nn.Conv1d(
|
| 179 |
+
in_channels=in_channels,
|
| 180 |
+
out_channels=out_channels,
|
| 181 |
+
kernel_size=1,
|
| 182 |
+
stride=stride,
|
| 183 |
+
padding=padding,
|
| 184 |
+
bias=bias,
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
| 188 |
+
return self.conv(inputs)
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
class ConformerConvModule(nn.Module):
|
| 192 |
+
def __init__(
|
| 193 |
+
self,
|
| 194 |
+
in_channels: int,
|
| 195 |
+
kernel_size: int = 31,
|
| 196 |
+
expansion_factor: int = 2,
|
| 197 |
+
dropout_p: float = 0.1,
|
| 198 |
+
) -> None:
|
| 199 |
+
super(ConformerConvModule, self).__init__()
|
| 200 |
+
assert (
|
| 201 |
+
kernel_size - 1
|
| 202 |
+
) % 2 == 0, "kernel_size should be a odd number for 'SAME' padding"
|
| 203 |
+
assert expansion_factor == 2, "Currently, Only Supports expansion_factor 2"
|
| 204 |
+
|
| 205 |
+
self.sequential = nn.Sequential(
|
| 206 |
+
nn.LayerNorm(in_channels),
|
| 207 |
+
Transpose(shape=(1, 2)),
|
| 208 |
+
PointwiseConv1d(
|
| 209 |
+
in_channels,
|
| 210 |
+
in_channels * expansion_factor,
|
| 211 |
+
stride=1,
|
| 212 |
+
padding=0,
|
| 213 |
+
bias=True,
|
| 214 |
+
),
|
| 215 |
+
GLU(dim=1),
|
| 216 |
+
DepthwiseConv1d(
|
| 217 |
+
in_channels,
|
| 218 |
+
in_channels,
|
| 219 |
+
kernel_size,
|
| 220 |
+
stride=1,
|
| 221 |
+
padding=(kernel_size - 1) // 2,
|
| 222 |
+
),
|
| 223 |
+
nn.BatchNorm1d(in_channels),
|
| 224 |
+
Swish(),
|
| 225 |
+
PointwiseConv1d(in_channels, in_channels, stride=1, padding=0, bias=True),
|
| 226 |
+
nn.Dropout(p=dropout_p),
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
| 230 |
+
return self.sequential(inputs).transpose(1, 2)
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
class FramewiseConv2dSubampling(nn.Module):
|
| 234 |
+
def __init__(self, out_channels: int, subsample_rate: int = 2) -> None:
|
| 235 |
+
super(FramewiseConv2dSubampling, self).__init__()
|
| 236 |
+
assert subsample_rate in {2, 4}, "subsample_rate should be 2 or 4"
|
| 237 |
+
self.subsample_rate = subsample_rate
|
| 238 |
+
self.cnn = nn.Sequential(
|
| 239 |
+
nn.Conv2d(1, out_channels, kernel_size=3, stride=2),
|
| 240 |
+
nn.ReLU(),
|
| 241 |
+
nn.Conv2d(
|
| 242 |
+
out_channels,
|
| 243 |
+
out_channels,
|
| 244 |
+
kernel_size=3,
|
| 245 |
+
stride=(2 if subsample_rate == 4 else 1, 2),
|
| 246 |
+
padding=(0 if subsample_rate == 4 else 1, 0),
|
| 247 |
+
),
|
| 248 |
+
nn.ReLU(),
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
def forward(
|
| 252 |
+
self, inputs: torch.Tensor, input_lengths: torch.LongTensor
|
| 253 |
+
) -> Tuple[torch.Tensor, torch.LongTensor]:
|
| 254 |
+
# inputs: (B, T, C) -> (B, 1, T, C)
|
| 255 |
+
if self.subsample_rate == 2 and inputs.shape[1] % 2 == 0:
|
| 256 |
+
inputs = F.pad(inputs, (0, 0, 0, 1), "constant", 0)
|
| 257 |
+
outputs = self.cnn(inputs.unsqueeze(1))
|
| 258 |
+
batch_size, channels, subsampled_lengths, sumsampled_dim = outputs.size()
|
| 259 |
+
|
| 260 |
+
outputs = outputs.permute(0, 2, 1, 3)
|
| 261 |
+
outputs = outputs.contiguous().view(
|
| 262 |
+
batch_size, subsampled_lengths, channels * sumsampled_dim
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
if self.subsample_rate == 4:
|
| 266 |
+
output_lengths = (((input_lengths - 1) >> 1) - 1) >> 1
|
| 267 |
+
else:
|
| 268 |
+
output_lengths = input_lengths >> 1
|
| 269 |
+
|
| 270 |
+
return outputs, output_lengths
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
class PatchwiseConv2dSubampling(nn.Module):
|
| 274 |
+
def __init__(
|
| 275 |
+
self,
|
| 276 |
+
mel_dim: int,
|
| 277 |
+
out_channels: int,
|
| 278 |
+
patch_size_time: int = 16,
|
| 279 |
+
patch_size_freq: int = 16,
|
| 280 |
+
) -> None:
|
| 281 |
+
super(PatchwiseConv2dSubampling, self).__init__()
|
| 282 |
+
|
| 283 |
+
self.mel_dim = mel_dim
|
| 284 |
+
self.patch_size_time = patch_size_time
|
| 285 |
+
self.patch_size_freq = patch_size_freq
|
| 286 |
+
|
| 287 |
+
self.proj = nn.Conv2d(
|
| 288 |
+
1,
|
| 289 |
+
out_channels,
|
| 290 |
+
kernel_size=(patch_size_time, patch_size_freq),
|
| 291 |
+
stride=(patch_size_time, patch_size_freq),
|
| 292 |
+
padding=0,
|
| 293 |
+
)
|
| 294 |
+
self.cnn = nn.Sequential(
|
| 295 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
|
| 296 |
+
nn.ReLU(),
|
| 297 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
|
| 298 |
+
nn.ReLU(),
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
@property
|
| 302 |
+
def subsample_rate(self) -> int:
|
| 303 |
+
return self.patch_size_time * self.patch_size_freq // self.mel_dim
|
| 304 |
+
|
| 305 |
+
def forward(
|
| 306 |
+
self, inputs: torch.Tensor, input_lengths: torch.LongTensor
|
| 307 |
+
) -> Tuple[torch.Tensor, torch.LongTensor]:
|
| 308 |
+
assert (
|
| 309 |
+
inputs.shape[2] == self.mel_dim
|
| 310 |
+
), "inputs.shape[2] should be equal to mel_dim"
|
| 311 |
+
|
| 312 |
+
# inputs: (B, Time, Freq) -> (B, 1, Time, Freq)
|
| 313 |
+
outputs = self.proj(inputs.unsqueeze(1))
|
| 314 |
+
outputs = self.cnn(outputs)
|
| 315 |
+
# (B, channels, Time // patch_size_time, Freq // patch_size_freq)
|
| 316 |
+
outputs = outputs.flatten(2, 3).transpose(1, 2)
|
| 317 |
+
# (B, (Time // patch_size_time) * (Freq // patch_size_freq), channels)
|
| 318 |
+
|
| 319 |
+
output_lengths = (
|
| 320 |
+
input_lengths
|
| 321 |
+
// self.patch_size_time
|
| 322 |
+
* (self.mel_dim // self.patch_size_freq)
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
return outputs, output_lengths
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
class RelPositionalEncoding(nn.Module):
|
| 329 |
+
def __init__(self, d_model: int, max_len: int = 10000) -> None:
|
| 330 |
+
super(RelPositionalEncoding, self).__init__()
|
| 331 |
+
self.d_model = d_model
|
| 332 |
+
self.pe = None
|
| 333 |
+
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
| 334 |
+
|
| 335 |
+
def extend_pe(self, x: torch.Tensor) -> None:
|
| 336 |
+
if self.pe is not None:
|
| 337 |
+
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
| 338 |
+
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
| 339 |
+
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
| 340 |
+
return
|
| 341 |
+
|
| 342 |
+
pe_positive = torch.zeros(x.size(1), self.d_model)
|
| 343 |
+
pe_negative = torch.zeros(x.size(1), self.d_model)
|
| 344 |
+
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
| 345 |
+
div_term = torch.exp(
|
| 346 |
+
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
| 347 |
+
* -(math.log(10000.0) / self.d_model)
|
| 348 |
+
)
|
| 349 |
+
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
| 350 |
+
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
| 351 |
+
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
| 352 |
+
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
| 353 |
+
|
| 354 |
+
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
| 355 |
+
pe_negative = pe_negative[1:].unsqueeze(0)
|
| 356 |
+
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
| 357 |
+
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
| 358 |
+
|
| 359 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 360 |
+
# x: (B, T, C)
|
| 361 |
+
self.extend_pe(x)
|
| 362 |
+
pos_emb = self.pe[
|
| 363 |
+
:,
|
| 364 |
+
self.pe.size(1) // 2 - x.size(1) + 1 : self.pe.size(1) // 2 + x.size(1),
|
| 365 |
+
]
|
| 366 |
+
return pos_emb
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
class RelativeMultiHeadAttention(nn.Module):
|
| 370 |
+
def __init__(
|
| 371 |
+
self,
|
| 372 |
+
d_model: int = 512,
|
| 373 |
+
num_heads: int = 16,
|
| 374 |
+
dropout_p: float = 0.1,
|
| 375 |
+
):
|
| 376 |
+
super(RelativeMultiHeadAttention, self).__init__()
|
| 377 |
+
assert d_model % num_heads == 0, "d_model % num_heads should be zero."
|
| 378 |
+
self.d_model = d_model
|
| 379 |
+
self.d_head = int(d_model / num_heads)
|
| 380 |
+
self.num_heads = num_heads
|
| 381 |
+
self.sqrt_dim = math.sqrt(self.d_head)
|
| 382 |
+
|
| 383 |
+
self.query_proj = Linear(d_model, d_model)
|
| 384 |
+
self.key_proj = Linear(d_model, d_model)
|
| 385 |
+
self.value_proj = Linear(d_model, d_model)
|
| 386 |
+
self.pos_proj = Linear(d_model, d_model, bias=False)
|
| 387 |
+
|
| 388 |
+
self.dropout = nn.Dropout(p=dropout_p)
|
| 389 |
+
self.u_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head))
|
| 390 |
+
self.v_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head))
|
| 391 |
+
torch.nn.init.xavier_uniform_(self.u_bias)
|
| 392 |
+
torch.nn.init.xavier_uniform_(self.v_bias)
|
| 393 |
+
|
| 394 |
+
self.out_proj = Linear(d_model, d_model)
|
| 395 |
+
|
| 396 |
+
def forward(
|
| 397 |
+
self,
|
| 398 |
+
query: torch.Tensor,
|
| 399 |
+
key: torch.Tensor,
|
| 400 |
+
value: torch.Tensor,
|
| 401 |
+
pos_embedding: torch.Tensor,
|
| 402 |
+
mask: Optional[torch.Tensor] = None,
|
| 403 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 404 |
+
batch_size = value.size(0)
|
| 405 |
+
|
| 406 |
+
query = self.query_proj(query).view(batch_size, -1, self.num_heads, self.d_head)
|
| 407 |
+
key = (
|
| 408 |
+
self.key_proj(key)
|
| 409 |
+
.view(batch_size, -1, self.num_heads, self.d_head)
|
| 410 |
+
.permute(0, 2, 1, 3)
|
| 411 |
+
)
|
| 412 |
+
value = (
|
| 413 |
+
self.value_proj(value)
|
| 414 |
+
.view(batch_size, -1, self.num_heads, self.d_head)
|
| 415 |
+
.permute(0, 2, 1, 3)
|
| 416 |
+
)
|
| 417 |
+
pos_embedding = self.pos_proj(pos_embedding).view(
|
| 418 |
+
batch_size, -1, self.num_heads, self.d_head
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
content_score = torch.matmul(
|
| 422 |
+
(query + self.u_bias).transpose(1, 2), key.transpose(2, 3)
|
| 423 |
+
)
|
| 424 |
+
pos_score = torch.matmul(
|
| 425 |
+
(query + self.v_bias).transpose(1, 2),
|
| 426 |
+
pos_embedding.permute(0, 2, 3, 1),
|
| 427 |
+
)
|
| 428 |
+
pos_score = self._relative_shift(pos_score)
|
| 429 |
+
|
| 430 |
+
score = (content_score + pos_score) / self.sqrt_dim
|
| 431 |
+
|
| 432 |
+
if mask is not None:
|
| 433 |
+
mask = mask.unsqueeze(1)
|
| 434 |
+
score.masked_fill_(mask, -1e9)
|
| 435 |
+
|
| 436 |
+
attn = F.softmax(score, -1)
|
| 437 |
+
attn = self.dropout(attn)
|
| 438 |
+
|
| 439 |
+
context = torch.matmul(attn, value).transpose(1, 2)
|
| 440 |
+
context = context.contiguous().view(batch_size, -1, self.d_model)
|
| 441 |
+
|
| 442 |
+
return self.out_proj(context), attn
|
| 443 |
+
|
| 444 |
+
def _relative_shift(self, pos_score: torch.Tensor) -> torch.Tensor:
|
| 445 |
+
batch_size, num_heads, seq_length1, seq_length2 = pos_score.size()
|
| 446 |
+
zeros = pos_score.new_zeros(batch_size, num_heads, seq_length1, 1)
|
| 447 |
+
padded_pos_score = torch.cat([zeros, pos_score], dim=-1)
|
| 448 |
+
|
| 449 |
+
padded_pos_score = padded_pos_score.view(
|
| 450 |
+
batch_size, num_heads, seq_length2 + 1, seq_length1
|
| 451 |
+
)
|
| 452 |
+
pos_score = padded_pos_score[:, :, 1:].view_as(pos_score)[
|
| 453 |
+
:, :, :, : seq_length2 // 2 + 1
|
| 454 |
+
]
|
| 455 |
+
|
| 456 |
+
return pos_score
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
class MultiHeadedSelfAttentionModule(nn.Module):
|
| 460 |
+
def __init__(self, d_model: int, num_heads: int, dropout_p: float = 0.1):
|
| 461 |
+
super(MultiHeadedSelfAttentionModule, self).__init__()
|
| 462 |
+
self.positional_encoding = RelPositionalEncoding(d_model)
|
| 463 |
+
self.layer_norm = nn.LayerNorm(d_model)
|
| 464 |
+
self.attention = RelativeMultiHeadAttention(d_model, num_heads, dropout_p)
|
| 465 |
+
self.dropout = nn.Dropout(p=dropout_p)
|
| 466 |
+
|
| 467 |
+
def forward(
|
| 468 |
+
self, inputs: torch.Tensor, mask: Optional[torch.Tensor] = None
|
| 469 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 470 |
+
batch_size = inputs.size(0)
|
| 471 |
+
pos_embedding = self.positional_encoding(inputs)
|
| 472 |
+
pos_embedding = pos_embedding.repeat(batch_size, 1, 1)
|
| 473 |
+
|
| 474 |
+
inputs = self.layer_norm(inputs)
|
| 475 |
+
outputs, attn = self.attention(
|
| 476 |
+
inputs, inputs, inputs, pos_embedding=pos_embedding, mask=mask
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
return self.dropout(outputs), attn
|
| 480 |
+
|
| 481 |
+
|
| 482 |
+
class ConformerBlock(nn.Module):
|
| 483 |
+
def __init__(
|
| 484 |
+
self,
|
| 485 |
+
encoder_dim: int = 512,
|
| 486 |
+
attention_type: str = "mhsa",
|
| 487 |
+
num_attention_heads: int = 8,
|
| 488 |
+
mamba_d_state: int = 16,
|
| 489 |
+
mamba_d_conv: int = 4,
|
| 490 |
+
mamba_expand: int = 2,
|
| 491 |
+
mamba_bidirectional: bool = True,
|
| 492 |
+
feed_forward_expansion_factor: int = 4,
|
| 493 |
+
conv_expansion_factor: int = 2,
|
| 494 |
+
feed_forward_dropout_p: float = 0.1,
|
| 495 |
+
attention_dropout_p: float = 0.1,
|
| 496 |
+
conv_dropout_p: float = 0.1,
|
| 497 |
+
conv_kernel_size: int = 31,
|
| 498 |
+
half_step_residual: bool = True,
|
| 499 |
+
transformer_style: bool = False,
|
| 500 |
+
):
|
| 501 |
+
super(ConformerBlock, self).__init__()
|
| 502 |
+
|
| 503 |
+
self.transformer_style = transformer_style
|
| 504 |
+
self.attention_type = attention_type
|
| 505 |
+
|
| 506 |
+
if half_step_residual and not transformer_style:
|
| 507 |
+
self.feed_forward_residual_factor = 0.5
|
| 508 |
+
else:
|
| 509 |
+
self.feed_forward_residual_factor = 1
|
| 510 |
+
|
| 511 |
+
assert attention_type in ["mhsa", "mamba"]
|
| 512 |
+
if attention_type == "mhsa":
|
| 513 |
+
attention = MultiHeadedSelfAttentionModule(
|
| 514 |
+
d_model=encoder_dim,
|
| 515 |
+
num_heads=num_attention_heads,
|
| 516 |
+
dropout_p=attention_dropout_p,
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
self.ffn_1 = FeedForwardModule(
|
| 520 |
+
encoder_dim=encoder_dim,
|
| 521 |
+
expansion_factor=feed_forward_expansion_factor,
|
| 522 |
+
dropout_p=feed_forward_dropout_p,
|
| 523 |
+
)
|
| 524 |
+
self.attention = attention
|
| 525 |
+
if not transformer_style:
|
| 526 |
+
self.conv = ConformerConvModule(
|
| 527 |
+
in_channels=encoder_dim,
|
| 528 |
+
kernel_size=conv_kernel_size,
|
| 529 |
+
expansion_factor=conv_expansion_factor,
|
| 530 |
+
dropout_p=conv_dropout_p,
|
| 531 |
+
)
|
| 532 |
+
self.ffn_2 = FeedForwardModule(
|
| 533 |
+
encoder_dim=encoder_dim,
|
| 534 |
+
expansion_factor=feed_forward_expansion_factor,
|
| 535 |
+
dropout_p=feed_forward_dropout_p,
|
| 536 |
+
)
|
| 537 |
+
self.layernorm = nn.LayerNorm(encoder_dim)
|
| 538 |
+
|
| 539 |
+
def forward(
|
| 540 |
+
self, x: torch.Tensor
|
| 541 |
+
) -> Tuple[torch.Tensor, Dict[str, Union[torch.Tensor, None]]]:
|
| 542 |
+
# FFN 1
|
| 543 |
+
ffn_1_out = self.ffn_1(x)
|
| 544 |
+
x = ffn_1_out * self.feed_forward_residual_factor + x
|
| 545 |
+
|
| 546 |
+
# Attention
|
| 547 |
+
if not isinstance(self.attention, MultiHeadedSelfAttentionModule):
|
| 548 |
+
# MAMBA
|
| 549 |
+
attn_out = self.attention(x)
|
| 550 |
+
attn = None
|
| 551 |
+
else:
|
| 552 |
+
attn_out, attn = self.attention(x)
|
| 553 |
+
x = attn_out + x
|
| 554 |
+
|
| 555 |
+
if self.transformer_style:
|
| 556 |
+
x = self.layernorm(x)
|
| 557 |
+
return x, {
|
| 558 |
+
"ffn_1": ffn_1_out,
|
| 559 |
+
"attn": attn,
|
| 560 |
+
"conv": None,
|
| 561 |
+
"ffn_2": None,
|
| 562 |
+
}
|
| 563 |
+
|
| 564 |
+
# Convolution
|
| 565 |
+
conv_out = self.conv(x)
|
| 566 |
+
x = conv_out + x
|
| 567 |
+
|
| 568 |
+
# FFN 2
|
| 569 |
+
ffn_2_out = self.ffn_2(x)
|
| 570 |
+
x = ffn_2_out * self.feed_forward_residual_factor + x
|
| 571 |
+
x = self.layernorm(x)
|
| 572 |
+
|
| 573 |
+
other = {
|
| 574 |
+
"ffn_1": ffn_1_out,
|
| 575 |
+
"attn": attn,
|
| 576 |
+
"conv": conv_out,
|
| 577 |
+
"ffn_2": ffn_2_out,
|
| 578 |
+
}
|
| 579 |
+
|
| 580 |
+
return x, other
|
| 581 |
+
|
| 582 |
+
|
| 583 |
+
class ConformerEncoder(nn.Module):
|
| 584 |
+
def __init__(self, cfg):
|
| 585 |
+
super(ConformerEncoder, self).__init__()
|
| 586 |
+
|
| 587 |
+
self.cfg = cfg
|
| 588 |
+
self.framewise_subsample = None
|
| 589 |
+
self.patchwise_subsample = None
|
| 590 |
+
self.framewise_in_proj = None
|
| 591 |
+
self.patchwise_in_proj = None
|
| 592 |
+
assert (
|
| 593 |
+
cfg.use_framewise_subsample or cfg.use_patchwise_subsample
|
| 594 |
+
), "At least one subsampling method should be used"
|
| 595 |
+
if cfg.use_framewise_subsample:
|
| 596 |
+
self.framewise_subsample = FramewiseConv2dSubampling(
|
| 597 |
+
out_channels=cfg.conv_subsample_channels,
|
| 598 |
+
subsample_rate=cfg.conv_subsample_rate,
|
| 599 |
+
)
|
| 600 |
+
self.framewise_in_proj = nn.Sequential(
|
| 601 |
+
Linear(
|
| 602 |
+
cfg.conv_subsample_channels * (((cfg.input_dim - 1) // 2 - 1) // 2),
|
| 603 |
+
cfg.encoder_dim,
|
| 604 |
+
),
|
| 605 |
+
nn.Dropout(p=cfg.input_dropout_p),
|
| 606 |
+
)
|
| 607 |
+
if cfg.use_patchwise_subsample:
|
| 608 |
+
self.patchwise_subsample = PatchwiseConv2dSubampling(
|
| 609 |
+
mel_dim=cfg.input_dim,
|
| 610 |
+
out_channels=cfg.conv_subsample_channels,
|
| 611 |
+
patch_size_time=cfg.patch_size_time,
|
| 612 |
+
patch_size_freq=cfg.patch_size_freq,
|
| 613 |
+
)
|
| 614 |
+
self.patchwise_in_proj = nn.Sequential(
|
| 615 |
+
Linear(
|
| 616 |
+
cfg.conv_subsample_channels,
|
| 617 |
+
cfg.encoder_dim,
|
| 618 |
+
),
|
| 619 |
+
nn.Dropout(p=cfg.input_dropout_p),
|
| 620 |
+
)
|
| 621 |
+
assert not cfg.use_framewise_subsample or (
|
| 622 |
+
cfg.conv_subsample_rate == self.patchwise_subsample.subsample_rate
|
| 623 |
+
), (
|
| 624 |
+
f"conv_subsample_rate ({cfg.conv_subsample_rate}) != patchwise_subsample.subsample_rate"
|
| 625 |
+
f"({self.patchwise_subsample.subsample_rate})"
|
| 626 |
+
)
|
| 627 |
+
|
| 628 |
+
self.framewise_norm, self.patchwise_norm = None, None
|
| 629 |
+
if getattr(cfg, "subsample_normalization", False):
|
| 630 |
+
if cfg.use_framewise_subsample:
|
| 631 |
+
self.framewise_norm = nn.LayerNorm(cfg.encoder_dim)
|
| 632 |
+
if cfg.use_patchwise_subsample:
|
| 633 |
+
self.patchwise_norm = nn.LayerNorm(cfg.encoder_dim)
|
| 634 |
+
|
| 635 |
+
self.conv_pos = None
|
| 636 |
+
if getattr(cfg, "conv_pos", False):
|
| 637 |
+
num_pos_layers = cfg.conv_pos_depth
|
| 638 |
+
k = max(3, cfg.conv_pos_width // num_pos_layers)
|
| 639 |
+
self.conv_pos = nn.Sequential(
|
| 640 |
+
TransposeLast(),
|
| 641 |
+
*[
|
| 642 |
+
nn.Sequential(
|
| 643 |
+
nn.Conv1d(
|
| 644 |
+
cfg.encoder_dim,
|
| 645 |
+
cfg.encoder_dim,
|
| 646 |
+
kernel_size=k,
|
| 647 |
+
padding=k // 2,
|
| 648 |
+
groups=cfg.conv_pos_groups,
|
| 649 |
+
),
|
| 650 |
+
SamePad(k),
|
| 651 |
+
TransposeLast(),
|
| 652 |
+
nn.LayerNorm(cfg.encoder_dim, elementwise_affine=False),
|
| 653 |
+
TransposeLast(),
|
| 654 |
+
nn.GELU(),
|
| 655 |
+
)
|
| 656 |
+
for _ in range(num_pos_layers)
|
| 657 |
+
],
|
| 658 |
+
TransposeLast(),
|
| 659 |
+
)
|
| 660 |
+
self.conv_pos_post_ln = nn.LayerNorm(cfg.encoder_dim)
|
| 661 |
+
|
| 662 |
+
self.layers = nn.ModuleList(
|
| 663 |
+
[
|
| 664 |
+
ConformerBlock(
|
| 665 |
+
encoder_dim=cfg.encoder_dim,
|
| 666 |
+
attention_type=cfg.attention_type,
|
| 667 |
+
num_attention_heads=cfg.num_attention_heads,
|
| 668 |
+
mamba_d_state=cfg.mamba_d_state,
|
| 669 |
+
mamba_d_conv=cfg.mamba_d_conv,
|
| 670 |
+
mamba_expand=cfg.mamba_expand,
|
| 671 |
+
mamba_bidirectional=cfg.mamba_bidirectional,
|
| 672 |
+
feed_forward_expansion_factor=cfg.feed_forward_expansion_factor,
|
| 673 |
+
conv_expansion_factor=cfg.conv_expansion_factor,
|
| 674 |
+
feed_forward_dropout_p=cfg.feed_forward_dropout_p,
|
| 675 |
+
attention_dropout_p=cfg.attention_dropout_p,
|
| 676 |
+
conv_dropout_p=cfg.conv_dropout_p,
|
| 677 |
+
conv_kernel_size=cfg.conv_kernel_size,
|
| 678 |
+
half_step_residual=cfg.half_step_residual,
|
| 679 |
+
transformer_style=getattr(cfg, "transformer_style", False),
|
| 680 |
+
)
|
| 681 |
+
for _ in range(cfg.num_layers)
|
| 682 |
+
]
|
| 683 |
+
)
|
| 684 |
+
|
| 685 |
+
def count_parameters(self) -> int:
|
| 686 |
+
"""Count parameters of encoder"""
|
| 687 |
+
return sum([p.numel() for p in self.parameters() if p.requires_grad])
|
| 688 |
+
|
| 689 |
+
def update_dropout(self, dropout_p: float) -> None:
|
| 690 |
+
"""Update dropout probability of encoder"""
|
| 691 |
+
for name, child in self.named_children():
|
| 692 |
+
if isinstance(child, nn.Dropout):
|
| 693 |
+
child.p = dropout_p
|
| 694 |
+
|
| 695 |
+
def forward(
|
| 696 |
+
self,
|
| 697 |
+
inputs: torch.Tensor,
|
| 698 |
+
input_lengths: Optional[torch.Tensor] = None,
|
| 699 |
+
return_hidden: bool = False,
|
| 700 |
+
freeze_input_layers: bool = False,
|
| 701 |
+
target_layer: Optional[int] = None,
|
| 702 |
+
) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, List[torch.Tensor]]]:
|
| 703 |
+
if input_lengths is None:
|
| 704 |
+
input_lengths = torch.full(
|
| 705 |
+
(inputs.size(0),),
|
| 706 |
+
inputs.size(1),
|
| 707 |
+
dtype=torch.long,
|
| 708 |
+
device=inputs.device,
|
| 709 |
+
)
|
| 710 |
+
|
| 711 |
+
with torch.no_grad() if freeze_input_layers else contextlib.ExitStack():
|
| 712 |
+
frame_feat, patch_feat = None, None
|
| 713 |
+
if self.framewise_subsample is not None:
|
| 714 |
+
frame_feat, frame_lengths = self.framewise_subsample(
|
| 715 |
+
inputs, input_lengths
|
| 716 |
+
)
|
| 717 |
+
frame_feat = self.framewise_in_proj(frame_feat)
|
| 718 |
+
if self.framewise_norm is not None:
|
| 719 |
+
frame_feat = self.framewise_norm(frame_feat)
|
| 720 |
+
|
| 721 |
+
if self.patchwise_subsample is not None:
|
| 722 |
+
patch_feat, patch_lengths = self.patchwise_subsample(
|
| 723 |
+
inputs, input_lengths
|
| 724 |
+
)
|
| 725 |
+
patch_feat = self.patchwise_in_proj(patch_feat)
|
| 726 |
+
if self.patchwise_norm is not None:
|
| 727 |
+
patch_feat = self.patchwise_norm(patch_feat)
|
| 728 |
+
|
| 729 |
+
if frame_feat is not None and patch_feat is not None:
|
| 730 |
+
min_len = min(frame_feat.size(1), patch_feat.size(1))
|
| 731 |
+
frame_feat = frame_feat[:, :min_len]
|
| 732 |
+
patch_feat = patch_feat[:, :min_len]
|
| 733 |
+
|
| 734 |
+
features = frame_feat + patch_feat
|
| 735 |
+
output_lengths = (
|
| 736 |
+
frame_lengths
|
| 737 |
+
if frame_lengths.max().item() < patch_lengths.max().item()
|
| 738 |
+
else patch_lengths
|
| 739 |
+
)
|
| 740 |
+
elif frame_feat is not None:
|
| 741 |
+
features = frame_feat
|
| 742 |
+
output_lengths = frame_lengths
|
| 743 |
+
else:
|
| 744 |
+
features = patch_feat
|
| 745 |
+
output_lengths = patch_lengths
|
| 746 |
+
|
| 747 |
+
if self.conv_pos is not None:
|
| 748 |
+
features = features + self.conv_pos(features)
|
| 749 |
+
features = self.conv_pos_post_ln(features)
|
| 750 |
+
|
| 751 |
+
layer_results = defaultdict(list)
|
| 752 |
+
|
| 753 |
+
outputs = features
|
| 754 |
+
for i, layer in enumerate(self.layers):
|
| 755 |
+
outputs, other = layer(outputs)
|
| 756 |
+
if return_hidden:
|
| 757 |
+
layer_results["hidden_states"].append(outputs)
|
| 758 |
+
for k, v in other.items():
|
| 759 |
+
layer_results[k].append(v)
|
| 760 |
+
|
| 761 |
+
if target_layer is not None and i == target_layer:
|
| 762 |
+
break
|
| 763 |
+
|
| 764 |
+
return outputs, output_lengths, layer_results
|