Update text_wrapper.py
Browse files- text_wrapper.py +81 -41
text_wrapper.py
CHANGED
|
@@ -2,6 +2,15 @@ import torch
|
|
| 2 |
import numpy as np
|
| 3 |
from tqdm import tqdm
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
class Sent_Retriever:
|
| 6 |
def __init__(self, bs=256, use_gpu=True):
|
| 7 |
self.bs = bs
|
|
@@ -19,8 +28,20 @@ class Sent_Retriever:
|
|
| 19 |
return embeddings
|
| 20 |
|
| 21 |
def score(self, queries, quotes):
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
return (query_emb @ quote_emb.T).tolist()
|
| 25 |
|
| 26 |
def get_tok_len(self, text_input):
|
|
@@ -93,11 +114,10 @@ class GTE(Sent_Retriever):
|
|
| 93 |
return self.embed_passages(quotes)
|
| 94 |
|
| 95 |
|
| 96 |
-
|
| 97 |
class Contriever():
|
| 98 |
-
def __init__(self, bs = 256, use_gpu= True):
|
| 99 |
from transformers import AutoTokenizer, AutoModel
|
| 100 |
-
self.model_path =
|
| 101 |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
|
| 102 |
self.model = AutoModel.from_pretrained(self.model_path)
|
| 103 |
self.bs = bs
|
|
@@ -133,21 +153,32 @@ class Contriever():
|
|
| 133 |
quote_embeddings.extend([q.cpu().detach().numpy() for q in batched_quote_embs])
|
| 134 |
return quote_embeddings
|
| 135 |
|
| 136 |
-
def score(self,
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
|
| 143 |
class DPR():
|
| 144 |
-
def __init__(self, bs = 256, use_gpu=
|
| 145 |
from transformers import DPRContextEncoder, DPRContextEncoderTokenizer, DPRQuestionEncoder, DPRQuestionEncoderTokenizer
|
| 146 |
-
self.model_path =
|
| 147 |
-
self.query_tok = DPRQuestionEncoderTokenizer.from_pretrained(self.model_path +"dpr-question_encoder-multiset-base")
|
| 148 |
-
self.query_enc = DPRQuestionEncoder.from_pretrained(self.model_path +"dpr-question_encoder-multiset-base")
|
| 149 |
-
self.ctx_tok = DPRContextEncoderTokenizer.from_pretrained(self.model_path +"dpr-ctx_encoder-multiset-base")
|
| 150 |
-
self.ctx_enc = DPRContextEncoder.from_pretrained(self.model_path +"dpr-ctx_encoder-multiset-base")
|
| 151 |
self.bs = bs
|
| 152 |
print("[text_wrapper.py - init] Setting up DPR...")
|
| 153 |
print("[text_wrapper.py - init] DPR is loaded from '{}'...".format( self.model_path ))
|
|
@@ -187,19 +218,30 @@ class DPR():
|
|
| 187 |
quote_embeddings.extend(quote_emb)
|
| 188 |
return quote_embeddings
|
| 189 |
|
| 190 |
-
def score(self,
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
|
| 197 |
class ColBERTReranker:
|
| 198 |
-
def __init__(self, bs = 256, use_gpu= True):
|
| 199 |
from colbert.modeling.colbert import ColBERT
|
| 200 |
from colbert.infra import ColBERTConfig
|
| 201 |
from transformers import AutoTokenizer
|
| 202 |
-
self.model_path =
|
| 203 |
self.bs = bs
|
| 204 |
config = ColBERTConfig(bsize=bs, root='./', query_token_id='[Q]', doc_token_id='[D]')
|
| 205 |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
|
|
@@ -231,8 +273,6 @@ class ColBERTReranker:
|
|
| 231 |
length = mask.sum().item() # Number of true tokens in this sequence
|
| 232 |
np_emb = emb[:length].cpu().numpy() # Shape: [L, H]
|
| 233 |
query_embeddings.append(np_emb) # `L` varies per example
|
| 234 |
-
|
| 235 |
-
# torch.cuda.empty_cache()
|
| 236 |
return query_embeddings
|
| 237 |
|
| 238 |
@staticmethod
|
|
@@ -274,32 +314,32 @@ class ColBERTReranker:
|
|
| 274 |
return quote_embeddings, quote_masks
|
| 275 |
return quote_embeddings
|
| 276 |
|
| 277 |
-
|
| 278 |
@staticmethod
|
| 279 |
def colbert_score(query_embed, quote_embeddings, quote_masks):
|
| 280 |
Q, H = query_embed.shape # [Q, H]
|
| 281 |
N, L, _ = quote_embeddings.shape # [N, L, H]
|
| 282 |
-
# 1. Compute [Q, N, L] (similarity btw every query token to every quote token)
|
| 283 |
-
# Expand query to [Q, 1, 1, H], quote_embeddings to [1, N, L, H]
|
| 284 |
query_expanded = query_embed[:, np.newaxis, np.newaxis, :] # [Q, 1, 1, H]
|
| 285 |
quote_expanded = quote_embeddings[np.newaxis, :, :, :] # [1, N, L, H]
|
| 286 |
sim = np.matmul(query_expanded, np.transpose(quote_expanded, (0 ,1 ,3 ,2))) # (Q, N, 1, L)
|
| 287 |
-
# But let's use broadcasting for dot product:
|
| 288 |
-
# sim[q, n, l] = np.dot(query_embed[q], quote_embeddings[n,l])
|
| 289 |
sim = np.einsum('qh,nlh->qnl', query_embed, quote_embeddings) # [Q, N, L]
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
maxsim = sim.max(-1) # [Q, N]
|
| 294 |
-
# 4. Aggregate (sum over query tokens)
|
| 295 |
-
scores = maxsim.sum(axis=0) # [N]
|
| 296 |
return scores
|
| 297 |
|
| 298 |
-
def score(self,
|
| 299 |
-
|
| 300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
scores_list = []
|
| 302 |
-
for
|
| 303 |
-
scores = self.colbert_score(
|
| 304 |
scores_list.append(scores.tolist())
|
| 305 |
return scores_list
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
from tqdm import tqdm
|
| 4 |
|
| 5 |
+
def is_str_list(obj): # Checks if it's a list and all elements are strings
|
| 6 |
+
return isinstance(obj, list) and all(isinstance(item, str) for item in obj)
|
| 7 |
+
|
| 8 |
+
def is_np_list(obj): # Checks if it's a list and all elements are np.ndarray
|
| 9 |
+
return isinstance(obj, list) and all(isinstance(item, np.ndarray) for item in obj)
|
| 10 |
+
|
| 11 |
+
def is_np_array(obj): # Checks if it's a np.ndarray
|
| 12 |
+
return isinstance(obj, np.ndarray)
|
| 13 |
+
|
| 14 |
class Sent_Retriever:
|
| 15 |
def __init__(self, bs=256, use_gpu=True):
|
| 16 |
self.bs = bs
|
|
|
|
| 28 |
return embeddings
|
| 29 |
|
| 30 |
def score(self, queries, quotes):
|
| 31 |
+
if is_str_list(queries):
|
| 32 |
+
query_emb = np.asarray(self.embed_queries(queries))
|
| 33 |
+
elif is_np_list(queries):
|
| 34 |
+
query_emb = np.asarray(queries)
|
| 35 |
+
elif is_np_array(queries):
|
| 36 |
+
query_emb = queries
|
| 37 |
+
|
| 38 |
+
if is_str_list(quotes):
|
| 39 |
+
quote_emb = np.asarray(self.embed_quotes(quotes))
|
| 40 |
+
elif is_np_list(quotes):
|
| 41 |
+
quote_emb = np.asarray(quotes)
|
| 42 |
+
elif is_np_array(quotes):
|
| 43 |
+
quote_emb = quotes
|
| 44 |
+
|
| 45 |
return (query_emb @ quote_emb.T).tolist()
|
| 46 |
|
| 47 |
def get_tok_len(self, text_input):
|
|
|
|
| 114 |
return self.embed_passages(quotes)
|
| 115 |
|
| 116 |
|
|
|
|
| 117 |
class Contriever():
|
| 118 |
+
def __init__(self, bs = 256, use_gpu= True, model_path='checkpoint/contriever-msmarco'):
|
| 119 |
from transformers import AutoTokenizer, AutoModel
|
| 120 |
+
self.model_path = model_path
|
| 121 |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
|
| 122 |
self.model = AutoModel.from_pretrained(self.model_path)
|
| 123 |
self.bs = bs
|
|
|
|
| 153 |
quote_embeddings.extend([q.cpu().detach().numpy() for q in batched_quote_embs])
|
| 154 |
return quote_embeddings
|
| 155 |
|
| 156 |
+
def score(self, queries, quotes):
|
| 157 |
+
if is_str_list(queries):
|
| 158 |
+
query_emb = np.asarray(self.embed_queries(queries))
|
| 159 |
+
elif is_np_list(queries):
|
| 160 |
+
query_emb = np.asarray(queries)
|
| 161 |
+
elif is_np_array(queries):
|
| 162 |
+
query_emb = queries
|
| 163 |
+
|
| 164 |
+
if is_str_list(quotes):
|
| 165 |
+
quote_emb = np.asarray(self.embed_quotes(quotes))
|
| 166 |
+
elif is_np_list(quotes):
|
| 167 |
+
quote_emb = np.asarray(quotes)
|
| 168 |
+
elif is_np_array(quotes):
|
| 169 |
+
quote_emb = quotes
|
| 170 |
+
|
| 171 |
+
return (query_emb @ quote_emb.T).tolist()
|
| 172 |
|
| 173 |
|
| 174 |
class DPR():
|
| 175 |
+
def __init__(self, bs = 256, use_gpu=True, model_path="checkpoint"):
|
| 176 |
from transformers import DPRContextEncoder, DPRContextEncoderTokenizer, DPRQuestionEncoder, DPRQuestionEncoderTokenizer
|
| 177 |
+
self.model_path = model_path
|
| 178 |
+
self.query_tok = DPRQuestionEncoderTokenizer.from_pretrained(self.model_path +"/dpr-question_encoder-multiset-base")
|
| 179 |
+
self.query_enc = DPRQuestionEncoder.from_pretrained(self.model_path +"/dpr-question_encoder-multiset-base")
|
| 180 |
+
self.ctx_tok = DPRContextEncoderTokenizer.from_pretrained(self.model_path +"/dpr-ctx_encoder-multiset-base")
|
| 181 |
+
self.ctx_enc = DPRContextEncoder.from_pretrained(self.model_path +"/dpr-ctx_encoder-multiset-base")
|
| 182 |
self.bs = bs
|
| 183 |
print("[text_wrapper.py - init] Setting up DPR...")
|
| 184 |
print("[text_wrapper.py - init] DPR is loaded from '{}'...".format( self.model_path ))
|
|
|
|
| 218 |
quote_embeddings.extend(quote_emb)
|
| 219 |
return quote_embeddings
|
| 220 |
|
| 221 |
+
def score(self, queries, quotes):
|
| 222 |
+
if is_str_list(queries):
|
| 223 |
+
query_emb = np.asarray(self.embed_queries(queries))
|
| 224 |
+
elif is_np_list(queries):
|
| 225 |
+
query_emb = np.asarray(queries)
|
| 226 |
+
elif is_np_array(queries):
|
| 227 |
+
query_emb = queries
|
| 228 |
+
|
| 229 |
+
if is_str_list(quotes):
|
| 230 |
+
quote_emb = np.asarray(self.embed_quotes(quotes))
|
| 231 |
+
elif is_np_list(quotes):
|
| 232 |
+
quote_emb = np.asarray(quotes)
|
| 233 |
+
elif is_np_array(quotes):
|
| 234 |
+
quote_emb = quotes
|
| 235 |
+
|
| 236 |
+
return (query_emb @ quote_emb.T).tolist()
|
| 237 |
|
| 238 |
|
| 239 |
class ColBERTReranker:
|
| 240 |
+
def __init__(self, bs = 256, use_gpu= True, model_path="checkpoint/colbertv2.0"):
|
| 241 |
from colbert.modeling.colbert import ColBERT
|
| 242 |
from colbert.infra import ColBERTConfig
|
| 243 |
from transformers import AutoTokenizer
|
| 244 |
+
self.model_path = model_path
|
| 245 |
self.bs = bs
|
| 246 |
config = ColBERTConfig(bsize=bs, root='./', query_token_id='[Q]', doc_token_id='[D]')
|
| 247 |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
|
|
|
|
| 273 |
length = mask.sum().item() # Number of true tokens in this sequence
|
| 274 |
np_emb = emb[:length].cpu().numpy() # Shape: [L, H]
|
| 275 |
query_embeddings.append(np_emb) # `L` varies per example
|
|
|
|
|
|
|
| 276 |
return query_embeddings
|
| 277 |
|
| 278 |
@staticmethod
|
|
|
|
| 314 |
return quote_embeddings, quote_masks
|
| 315 |
return quote_embeddings
|
| 316 |
|
|
|
|
| 317 |
@staticmethod
|
| 318 |
def colbert_score(query_embed, quote_embeddings, quote_masks):
|
| 319 |
Q, H = query_embed.shape # [Q, H]
|
| 320 |
N, L, _ = quote_embeddings.shape # [N, L, H]
|
|
|
|
|
|
|
| 321 |
query_expanded = query_embed[:, np.newaxis, np.newaxis, :] # [Q, 1, 1, H]
|
| 322 |
quote_expanded = quote_embeddings[np.newaxis, :, :, :] # [1, N, L, H]
|
| 323 |
sim = np.matmul(query_expanded, np.transpose(quote_expanded, (0 ,1 ,3 ,2))) # (Q, N, 1, L)
|
|
|
|
|
|
|
| 324 |
sim = np.einsum('qh,nlh->qnl', query_embed, quote_embeddings) # [Q, N, L]
|
| 325 |
+
sim = np.where(quote_masks[np.newaxis, :, : ]==1, sim, -1e9) # Mask invalid tokens [Q, N, L]
|
| 326 |
+
maxsim = sim.max(-1) # MaxSim: For each query token, take max over quote tokens [Q, N]
|
| 327 |
+
scores = maxsim.sum(axis=0) # Aggregate (sum over query tokens) [N]
|
|
|
|
|
|
|
|
|
|
| 328 |
return scores
|
| 329 |
|
| 330 |
+
def score(self, queries, quotes):
|
| 331 |
+
if is_str_list(queries):
|
| 332 |
+
query_embed = self.embed_queries(queries)
|
| 333 |
+
elif is_np_list(queries):
|
| 334 |
+
query_embed = queries
|
| 335 |
+
|
| 336 |
+
if is_str_list(quotes):
|
| 337 |
+
quote_embed, quote_masks = self.embed_quotes(quotes, pad_token_len=True)
|
| 338 |
+
elif is_np_list(quotes):
|
| 339 |
+
quote_embed, quote_masks = self.pad_tok_len(quotes)
|
| 340 |
+
|
| 341 |
scores_list = []
|
| 342 |
+
for q_embed in query_embed:
|
| 343 |
+
scores = self.colbert_score(q_embed, quote_embed, quote_masks)
|
| 344 |
scores_list.append(scores.tolist())
|
| 345 |
return scores_list
|