Safetensors
daviddongdong commited on
Commit
751560b
·
verified ·
1 Parent(s): 349d756

Create vision_wrapper.py

Browse files
Files changed (1) hide show
  1. vision_wrapper.py +376 -0
vision_wrapper.py ADDED
@@ -0,0 +1,376 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from torch.utils.data import DataLoader
5
+ from tqdm import tqdm
6
+ from PIL import Image
7
+ import numpy as np
8
+ import io
9
+
10
+ from transformers import AutoProcessor
11
+ from transformers.models.paligemma.modeling_paligemma import (
12
+ PaliGemmaConfig,
13
+ PaliGemmaForConditionalGeneration,
14
+ PaliGemmaPreTrainedModel,
15
+ )
16
+
17
+ from transformers.models.qwen2_vl import (
18
+ Qwen2VLForConditionalGeneration,
19
+ Qwen2VLConfig,
20
+ )
21
+
22
+ class ColPali(PaliGemmaPreTrainedModel):
23
+ """
24
+ ColPali model implementation from the "ColPali: Efficient Document Retrieval with Vision Language Models" paper.
25
+ """
26
+ def __init__(self, config: PaliGemmaConfig):
27
+ super().__init__(config=config)
28
+ model = PaliGemmaForConditionalGeneration(config=config)
29
+ if model.language_model._tied_weights_keys is not None:
30
+ self._tied_weights_keys = [f"model.language_model.{k}" for k in model.language_model._tied_weights_keys]
31
+ self.model = model
32
+ self.dim = 128
33
+ self.custom_text_proj = nn.Linear(self.model.config.text_config.hidden_size, self.dim)
34
+ self.post_init()
35
+
36
+ def forward(self, *args, **kwargs) -> torch.Tensor:
37
+ # Delete output_hidden_states from kwargs
38
+ kwargs.pop("output_hidden_states", None)
39
+ outputs = self.model(*args, output_hidden_states=True, **kwargs) # (batch_size, sequence_length, hidden_size)
40
+ last_hidden_states = outputs.hidden_states[-1] # (batch_size, sequence_length, hidden_size)
41
+ proj = self.custom_text_proj(last_hidden_states) # (batch_size, sequence_length, dim)
42
+ # L2 normalization
43
+ proj = proj / proj.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim)
44
+ proj = proj * kwargs["attention_mask"].unsqueeze(-1) # (batch_size, sequence_length, dim)
45
+ return proj
46
+
47
+
48
+ class ColPaliRetriever():
49
+ def __init__(self, bs=4, use_gpu=True):
50
+ self.bs = bs
51
+ self.bs_query = 64
52
+ self.model_name = "checkpoint/colpali-v1.1"
53
+ self.base_ckpt = "checkpoint/colpaligemma-3b-mix-448-base"
54
+ # Load model on cuda:0 by default!
55
+ device = "cuda:0" if (torch.cuda.is_available() and use_gpu) else "cpu"
56
+ self.model = ColPali.from_pretrained(
57
+ self.base_ckpt, torch_dtype=torch.bfloat16, device_map=None # <-- NONE: Don't use device_map
58
+ )
59
+ self.model.load_adapter(self.model_name)
60
+ self.model = self.model.to(device)
61
+ self.model.eval()
62
+ # Multi-GPU with DataParallel
63
+ if torch.cuda.device_count() > 1 and use_gpu:
64
+ print(f"[ColPaliRetriever] Using DataParallel on {torch.cuda.device_count()} GPUs")
65
+ self.model = torch.nn.DataParallel(self.model)
66
+ self.device = torch.device("cuda:0")
67
+ else:
68
+ self.device = torch.device(device)
69
+ print(f"[ColPaliRetriever - init] ColPali loaded from '{self.base_ckpt}' (Adapter '{self.model_name}')...")
70
+ # Load processor
71
+ self.processor = AutoProcessor.from_pretrained(self.model_name)
72
+ self.mock_image = Image.new("RGB", (16, 16), color="black")
73
+
74
+
75
+ def embed_queries(self, queries, pad=False):
76
+ if isinstance(queries, str):
77
+ queries = [queries]
78
+ embeddings = []
79
+ dataloader = DataLoader(queries, batch_size=self.bs_query, shuffle=False,
80
+ collate_fn=lambda x: self.process_queries(x))
81
+ with torch.no_grad():
82
+ for batch in tqdm(dataloader, desc="[ColPaliRetriever] Embedding queries"):
83
+ batch = {k: v.to(self.device) for k, v in batch.items()}
84
+ outputs = self.model(**batch)
85
+ attention_mask = batch["attention_mask"]
86
+ if isinstance(outputs, (tuple, list)): outputs = outputs[0]
87
+ for emb, mask in zip(outputs, attention_mask):
88
+ if pad:
89
+ embeddings.append(emb.cpu().float().numpy())
90
+ else:
91
+ emb_nonpad = emb[mask.bool()]
92
+ embeddings.append(emb_nonpad.cpu().float().numpy())
93
+ return embeddings
94
+
95
+ def embed_quotes(self, images):
96
+ if isinstance(images, Image.Image):
97
+ images = [images]
98
+ embeddings = []
99
+ dataloader = DataLoader(images, batch_size=self.bs, shuffle=False,
100
+ collate_fn=lambda x: self.process_images(x))
101
+ with torch.no_grad():
102
+ for batch in tqdm(dataloader, desc="[ColPaliRetriever] Embedding images"):
103
+ batch = {k: v.to(self.device) for k, v in batch.items()}
104
+ outputs = self.model(**batch)
105
+ for emb in torch.unbind(outputs):
106
+ embeddings.append(emb.cpu().float().numpy())
107
+ return embeddings
108
+
109
+
110
+ def process_queries(self, queries, max_length=512):
111
+ texts_query = [f"Question: {q}" + "<pad>" * 10 for q in queries]
112
+ sl = getattr(self.processor, "image_seq_length", 32) # 1024
113
+ batch_query = self.processor(
114
+ images=[self.mock_image] * len(texts_query),
115
+ text=texts_query,
116
+ return_tensors="pt",
117
+ padding="longest",
118
+ max_length=max_length + sl # fallback seq len
119
+ )
120
+ if "pixel_values" in batch_query: del batch_query["pixel_values"]
121
+
122
+ batch_query["input_ids"] = batch_query["input_ids"][..., sl :]
123
+ batch_query["attention_mask"] = batch_query["attention_mask"][..., sl :]
124
+ return batch_query
125
+
126
+ def process_images(self, images):
127
+ pil_images = []
128
+ for img in images:
129
+ if isinstance(img, Image.Image): # Already a PIL Image
130
+ pil_img = img
131
+ elif isinstance(img, (bytes, bytearray)): # Binary image (e.g., from buffered.getvalue())
132
+ pil_img = Image.open(io.BytesIO(img))
133
+ else:
134
+ raise ValueError("Each image must be a PIL.Image.Image or bytes.")
135
+ pil_images.append(pil_img.convert("RGB"))
136
+
137
+ texts = ["Describe the image."] * len(pil_images)
138
+ batch_docs = self.processor(
139
+ text=texts,
140
+ images=pil_images,
141
+ return_tensors="pt",
142
+ padding="longest"
143
+ )
144
+ return batch_docs
145
+
146
+ def score(self, query_embs, image_embs):
147
+ """
148
+ Computes (batch) similarity scores MaxSim style.
149
+ Inputs:
150
+ query_embs: [Nq, seq, dim]
151
+ image_embs: [Ni, seq, dim]
152
+ Returns:
153
+ scores: [Nq, Ni] max similarity per query-image (like ColBERT)
154
+ """
155
+ qs = [torch.from_numpy(e) for e in query_embs]
156
+ ds = [torch.from_numpy(e) for e in image_embs]
157
+ # MaxSim/colbert scoring: max dot product over sequence dimension
158
+ # shape: [Q, D]
159
+ scores = np.zeros((len(qs), len(ds)), dtype=np.float32)
160
+ for i, q in enumerate(qs):
161
+ q = q.float() # [Lq, d]
162
+ for j, d in enumerate(ds):
163
+ d = d.float() # [Ld, d]
164
+ # score = max_{q_token, d_token} q_token @ d_token.T
165
+ sim = torch.matmul(q, d.T) # [Lq, Ld]
166
+ maxsim = torch.max(sim, dim=1)[0].sum().item() # colbert-style batch: sum-of-max over query tokens
167
+ scores[i, j] = maxsim
168
+ return scores
169
+
170
+
171
+
172
+ class ColQwen2(Qwen2VLForConditionalGeneration):
173
+ """
174
+ ColQwen2 model implementation.
175
+ """
176
+ def __init__(self, config: Qwen2VLConfig):
177
+ super().__init__(config)
178
+ self.dim = 128
179
+ self.custom_text_proj = torch.nn.Linear(self.model.config.hidden_size, self.dim)
180
+ self.padding_side = "left"
181
+ self.post_init()
182
+
183
+ def forward(self, *args, **kwargs) -> torch.Tensor:
184
+ kwargs.pop("output_hidden_states", None)
185
+ # scatter hack for DDP, see original code if needed
186
+ if "pixel_values" in kwargs and "image_grid_thw" in kwargs:
187
+ offsets = kwargs["image_grid_thw"][:, 1] * kwargs["image_grid_thw"][:, 2]
188
+ kwargs["pixel_values"] = torch.cat([pv[:o] for pv, o in zip(kwargs["pixel_values"], offsets)], dim=0)
189
+
190
+ position_ids, rope_deltas = self.get_rope_index(
191
+ input_ids=kwargs["input_ids"],
192
+ image_grid_thw=kwargs.get("image_grid_thw", None),
193
+ video_grid_thw=None,
194
+ attention_mask=kwargs.get("attention_mask", None),
195
+ )
196
+ outputs = super().forward(*args,
197
+ **kwargs,
198
+ position_ids=position_ids,
199
+ rope_deltas=rope_deltas,
200
+ use_cache=False,
201
+ output_hidden_states=True)
202
+ last_hidden_states = outputs.hidden_states[-1]
203
+ proj = self.custom_text_proj(last_hidden_states)
204
+ proj = proj / proj.norm(dim=-1, keepdim=True)
205
+ proj = proj * kwargs["attention_mask"].unsqueeze(-1)
206
+ return proj
207
+
208
+
209
+ class ColQwen2Retriever:
210
+ def __init__(self, bs=4, use_gpu=True):
211
+ self.bs = bs
212
+ self.bs_query = 64
213
+ self.model_name = "checkpoint/colqwen2-v1.0"
214
+ self.base_ckpt = "checkpoint/colqwen2-base"
215
+ self.device = "cuda" if torch.cuda.is_available() and use_gpu else "cpu"
216
+
217
+ self.model = ColQwen2.from_pretrained(
218
+ self.base_ckpt,
219
+ torch_dtype=torch.bfloat16,
220
+ device_map=self.device
221
+ )
222
+ self.model.load_adapter(self.model_name)
223
+ self.model.eval()
224
+
225
+ # DataParallel:
226
+ self.is_parallel = False
227
+ if torch.cuda.device_count() > 1:
228
+ print(f"Using {torch.cuda.device_count()} GPUs with DataParallel")
229
+ self.model = torch.nn.DataParallel(self.model)
230
+ self.is_parallel = True
231
+
232
+ self.processor = AutoProcessor.from_pretrained(self.model_name)
233
+ self.min_pixels = 4 * 28 * 28
234
+ self.max_pixels = 768 * 28 * 28
235
+ self.factor = 28
236
+ self.max_ratio = 200
237
+
238
+ # ---------- Image Processing Utilities ----------
239
+ @staticmethod
240
+ def round_by_factor(number, factor):
241
+ return round(number / factor) * factor
242
+
243
+ @staticmethod
244
+ def ceil_by_factor(number, factor):
245
+ return math.ceil(number / factor) * factor
246
+
247
+ @staticmethod
248
+ def floor_by_factor(number, factor):
249
+ return math.floor(number / factor) * factor
250
+
251
+ def smart_resize(self, height: int, width: int) -> tuple:
252
+ if max(height, width) / min(height, width) > self.max_ratio:
253
+ raise ValueError(
254
+ f"absolute aspect ratio must be smaller than {self.max_ratio}, "
255
+ f"got {max(height, width) / min(height, width)}"
256
+ )
257
+ h_bar = max(self.factor, self.round_by_factor(height, self.factor))
258
+ w_bar = max(self.factor, self.round_by_factor(width, self.factor))
259
+ if h_bar * w_bar > self.max_pixels:
260
+ beta = math.sqrt((height * width) / self.max_pixels)
261
+ h_bar = self.floor_by_factor(height / beta, self.factor)
262
+ w_bar = self.floor_by_factor(width / beta, self.factor)
263
+ elif h_bar * w_bar < self.min_pixels:
264
+ beta = math.sqrt(self.min_pixels / (height * width))
265
+ h_bar = self.ceil_by_factor(height * beta, self.factor)
266
+ w_bar = self.ceil_by_factor(width * beta, self.factor)
267
+ return h_bar, w_bar
268
+
269
+ def process_images(self, images):
270
+ pil_images = []
271
+ for img in images:
272
+ if isinstance(img, Image.Image):
273
+ pil_img = img
274
+ elif isinstance(img, (bytes, bytearray)):
275
+ pil_img = Image.open(io.BytesIO(img))
276
+ else:
277
+ raise ValueError("Each image must be a PIL.Image.Image or bytes.")
278
+ pil_images.append(pil_img.convert("RGB"))
279
+
280
+ # Resize and convert
281
+ resized_images = []
282
+ for image in pil_images:
283
+ orig_size = image.size
284
+ resized_height, resized_width = self.smart_resize(orig_size[1], orig_size[0])
285
+ out_img = image.resize((resized_width,resized_height)).convert('RGB')
286
+ resized_images.append(out_img)
287
+
288
+ texts_doc = [
289
+ "<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe the image.<|im_end|>\n"
290
+ ] * len(resized_images)
291
+
292
+ batch_doc = self.processor(
293
+ text=texts_doc,
294
+ images=resized_images,
295
+ padding="longest",
296
+ return_tensors="pt"
297
+ )
298
+ # The following hack can be skipped during inference unless you run into shape mismatch
299
+ offsets = batch_doc["image_grid_thw"][:, 1] * batch_doc["image_grid_thw"][:, 2]
300
+ pixel_values = torch.split(batch_doc["pixel_values"], offsets.tolist())
301
+ max_length = max([len(pv) for pv in pixel_values])
302
+ pixel_values = [torch.cat([pv,
303
+ torch.zeros((max_length - len(pv), pv.shape[1]),
304
+ dtype=pv.dtype, device=pv.device)]) for pv in pixel_values]
305
+ batch_doc["pixel_values"] = torch.stack(pixel_values)
306
+ return batch_doc
307
+
308
+ def process_queries(self, queries, max_length=50, suffix=None):
309
+ if suffix is None:
310
+ suffix = "<pad>" * 10
311
+ texts_query = []
312
+ for q in queries:
313
+ q_ = f"Query: {q}{suffix}"
314
+ texts_query.append(q_)
315
+ batch_query = self.processor(
316
+ text=texts_query,
317
+ return_tensors="pt",
318
+ padding="longest",
319
+ )
320
+ return batch_query
321
+
322
+ def embed_queries(self, queries, pad=False):
323
+ if isinstance(queries, str):
324
+ queries = [queries]
325
+ embeddings = []
326
+ dataloader = DataLoader(
327
+ queries, batch_size=self.bs_query, shuffle=False,
328
+ collate_fn=lambda x: self.process_queries(x)
329
+ )
330
+ with torch.no_grad():
331
+ # Use main device for DataParallel
332
+ dev = self.model.device_ids[0] if self.is_parallel else self.model.device
333
+ for batch in tqdm(dataloader, desc="[ColQwen2Retriever] Embedding queries"):
334
+ batch = {k: v.to(dev) for k, v in batch.items()}
335
+ outputs = self.model(**batch)
336
+ attention_mask = batch["attention_mask"]
337
+ if isinstance(outputs, (tuple, list)):
338
+ outputs = outputs[0]
339
+ for emb, mask in zip(outputs, attention_mask):
340
+ if pad:
341
+ embeddings.append(emb.cpu().float().numpy())
342
+ else:
343
+ emb_nonpad = emb[mask.bool()]
344
+ embeddings.append(emb_nonpad.cpu().float().numpy())
345
+ return embeddings
346
+
347
+ def embed_quotes(self, images):
348
+ if isinstance(images, Image.Image):
349
+ images = [images]
350
+ embeddings = []
351
+ dataloader = DataLoader(
352
+ images, batch_size=self.bs, shuffle=False,
353
+ collate_fn=lambda x: self.process_images(x)
354
+ )
355
+ with torch.no_grad():
356
+ dev = self.model.device_ids[0] if self.is_parallel else self.model.device
357
+ for batch in tqdm(dataloader, desc="[ColQwen2Retriever] Embedding images"):
358
+ batch = {k: v.to(dev) for k, v in batch.items()}
359
+ outputs = self.model(**batch)
360
+ for emb in torch.unbind(outputs):
361
+ embeddings.append(emb.cpu().float().numpy())
362
+ return embeddings
363
+
364
+
365
+ def score(self, query_embs, image_embs):
366
+ qs = [torch.from_numpy(e) for e in query_embs]
367
+ ds = [torch.from_numpy(e) for e in image_embs]
368
+ scores = np.zeros((len(qs), len(ds)), dtype=np.float32)
369
+ for i, q in enumerate(qs):
370
+ q = q.float()
371
+ for j, d in enumerate(ds):
372
+ d = d.float()
373
+ sim = torch.matmul(q, d.T)
374
+ maxsim = torch.max(sim, dim=1)[0].sum().item()
375
+ scores[i, j] = maxsim
376
+ return scores