Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# SOFIA: SOFt Intel Artificial Embedding Model
|
| 2 |
|
| 3 |
**SOFIA** (SOFt Intel Artificial) is a cutting-edge sentence embedding model developed by Zunvra.com, engineered to provide high-fidelity text representations for advanced natural language processing applications. Leveraging the powerful `sentence-transformers/all-mpnet-base-v2` as its foundation, SOFIA employs sophisticated fine-tuning methodologies including Low-Rank Adaptation (LoRA) and a dual-loss optimization strategy (cosine similarity and triplet loss) to excel in semantic comprehension and information retrieval.
|
|
@@ -142,6 +167,41 @@ Based on training metrics and similar models, SOFIA is expected to achieve:
|
|
| 142 |
|
| 143 |
These expectations are conservative; actual performance may exceed based on task-specific fine-tuning.
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
## Evaluation
|
| 146 |
|
| 147 |
### Recommended Benchmarks
|
|
@@ -207,6 +267,10 @@ Zunvra.com is committed to responsible AI development:
|
|
| 207 |
- transformers >= 4.35.0
|
| 208 |
- numpy >= 1.21.0
|
| 209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
### System Requirements
|
| 211 |
|
| 212 |
- **Minimum**: CPU with 8GB RAM
|
|
@@ -268,6 +332,16 @@ clusters = kmeans.fit_predict(embeddings)
|
|
| 268 |
print(clusters) # [0, 0, 1, 1]
|
| 269 |
```
|
| 270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
## Deployment
|
| 272 |
|
| 273 |
### Local Deployment
|
|
@@ -278,6 +352,20 @@ from sentence_transformers import SentenceTransformer
|
|
| 278 |
model = SentenceTransformer('MaliosDark/sofia-embedding-v1')
|
| 279 |
```
|
| 280 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
### API Deployment
|
| 282 |
|
| 283 |
```python
|
|
@@ -343,147 +431,3 @@ We welcome contributions to improve SOFIA:
|
|
| 343 |
---
|
| 344 |
|
| 345 |
*SOFIA: Intelligent embeddings for the future of AI.*
|
| 346 |
-
|
| 347 |
-
## Hugging Face Model Card Upgrades
|
| 348 |
-
|
| 349 |
-
Your model is live on Hugging Face! It loads correctly as **MPNet + mean pooling + Dense(768→1024)**, matching your configuration files. Here are **drop-in upgrades** to enhance your model card with widgets, metrics, and better discoverability.
|
| 350 |
-
|
| 351 |
-
### 1. YAML Front Matter (Required)
|
| 352 |
-
Add this to the **very top** of your README.md (before the title) to enable Hugging Face features:
|
| 353 |
-
|
| 354 |
-
```yaml
|
| 355 |
-
---
|
| 356 |
-
library_name: sentence-transformers
|
| 357 |
-
license: apache-2.0
|
| 358 |
-
pipeline_tag: sentence-similarity
|
| 359 |
-
tags:
|
| 360 |
-
- embeddings
|
| 361 |
-
- sentence-transformers
|
| 362 |
-
- mpnet
|
| 363 |
-
- lora
|
| 364 |
-
- triplet-loss
|
| 365 |
-
- cosine-similarity
|
| 366 |
-
- retrieval
|
| 367 |
-
- mteb
|
| 368 |
-
language:
|
| 369 |
-
- en
|
| 370 |
-
datasets:
|
| 371 |
-
- sentence-transformers/stsb
|
| 372 |
-
- paws
|
| 373 |
-
- banking77
|
| 374 |
-
- mteb/nq
|
| 375 |
-
widget:
|
| 376 |
-
- text: "Hello world"
|
| 377 |
-
- text: "How are you?"
|
| 378 |
-
---
|
| 379 |
-
```
|
| 380 |
-
|
| 381 |
-
### 2. License File (Required)
|
| 382 |
-
Create a `LICENSE` file in your repo root with the full Apache 2.0 text. Hugging Face will auto-detect it.
|
| 383 |
-
|
| 384 |
-
### 3. MTEB Metrics Block (Recommended)
|
| 385 |
-
To display performance metrics on your model card:
|
| 386 |
-
|
| 387 |
-
**Step A: Run evaluation locally**
|
| 388 |
-
```bash
|
| 389 |
-
python -c "
|
| 390 |
-
from mteb import MTEB
|
| 391 |
-
from sentence_transformers import SentenceTransformer
|
| 392 |
-
model = SentenceTransformer('MaliosDark/sofia-embedding-v1')
|
| 393 |
-
tasks = ['STS12', 'STS13', 'STS14', 'STS15', 'STS16', 'STSBenchmark']
|
| 394 |
-
MTEB(tasks=tasks).run(model, output_folder='./mteb_results')
|
| 395 |
-
"
|
| 396 |
-
```
|
| 397 |
-
|
| 398 |
-
**Step B: Add metrics placeholder to README**
|
| 399 |
-
```markdown
|
| 400 |
-
<!-- METRICS_START -->
|
| 401 |
-
_TBD_
|
| 402 |
-
<!-- METRICS_END -->
|
| 403 |
-
```
|
| 404 |
-
|
| 405 |
-
**Step C: Inject results automatically**
|
| 406 |
-
```bash
|
| 407 |
-
python -c "
|
| 408 |
-
import json, glob, re
|
| 409 |
-
from pathlib import Path
|
| 410 |
-
|
| 411 |
-
results = []
|
| 412 |
-
for f in glob.glob('mteb_results/*/*/results.json'):
|
| 413 |
-
data = json.load(open(f))
|
| 414 |
-
task = data['mteb_dataset_name']
|
| 415 |
-
main = data.get('main_score')
|
| 416 |
-
pearson = data.get('test', {}).get('cos_sim', {}).get('pearson')
|
| 417 |
-
spearman = data.get('test', {}).get('cos_sim', {}).get('spearman')
|
| 418 |
-
results.append((task, main, pearson, spearman))
|
| 419 |
-
|
| 420 |
-
lines = ['model-index:', '- name: sofia-embedding-v1', ' results:']
|
| 421 |
-
for task, main, p, s in sorted(results):
|
| 422 |
-
m = f'{main:.4f}' if main else 'null'
|
| 423 |
-
pe = f'{p:.4f}' if p else 'null'
|
| 424 |
-
sp = f'{s:.4f}' if s else 'null'
|
| 425 |
-
lines.extend([
|
| 426 |
-
f' - task: {{type: sts, name: STS}}',
|
| 427 |
-
f' dataset: {{name: {task}, type: mteb/{task}}}',
|
| 428 |
-
' metrics:',
|
| 429 |
-
f' - type: main_score',
|
| 430 |
-
f' value: {m}',
|
| 431 |
-
f' - type: pearson',
|
| 432 |
-
f' value: {pe}',
|
| 433 |
-
f' - type: spearman',
|
| 434 |
-
f' value: {sp}'
|
| 435 |
-
])
|
| 436 |
-
|
| 437 |
-
block = '```\n' + '\n'.join(lines) + '\n```'
|
| 438 |
-
readme = Path('README.md').read_text()
|
| 439 |
-
readme = re.sub(r'<!-- METRICS_START -->.*?<!-- METRICS_END -->',
|
| 440 |
-
f'<!-- METRICS_START -->\n{block}\n<!-- METRICS_END -->',
|
| 441 |
-
readme, flags=re.S)
|
| 442 |
-
Path('README.md').write_text(readme)
|
| 443 |
-
print('Metrics injected into README!')
|
| 444 |
-
"
|
| 445 |
-
```
|
| 446 |
-
|
| 447 |
-
### 4. Inference Configuration (Already Correct)
|
| 448 |
-
Your model correctly outputs 1024-dimensional embeddings with mean pooling. No changes needed.
|
| 449 |
-
|
| 450 |
-
### 5. Prompted Retrieval Mode (Optional)
|
| 451 |
-
For better zero-shot retrieval, update `config_sentence_transformers.json`:
|
| 452 |
-
|
| 453 |
-
```json
|
| 454 |
-
{
|
| 455 |
-
"__version__": { "sentence_transformers": "5.1.0" },
|
| 456 |
-
"model_type": "SentenceTransformer",
|
| 457 |
-
"prompts": { "query": "Query: ", "document": "Document: " },
|
| 458 |
-
"default_prompt_name": null,
|
| 459 |
-
"similarity_fn_name": "cosine"
|
| 460 |
-
}
|
| 461 |
-
```
|
| 462 |
-
|
| 463 |
-
### 6. Usage Examples
|
| 464 |
-
Add these minimal code snippets to your README:
|
| 465 |
-
|
| 466 |
-
**Python:**
|
| 467 |
-
```python
|
| 468 |
-
from sentence_transformers import SentenceTransformer, util
|
| 469 |
-
|
| 470 |
-
model = SentenceTransformer("MaliosDark/sofia-embedding-v1")
|
| 471 |
-
sentences = ["Hello world", "How are you?"]
|
| 472 |
-
embeddings = model.encode(sentences, normalize_embeddings=True)
|
| 473 |
-
similarity = util.cos_sim(embeddings[0], embeddings[1])
|
| 474 |
-
print(similarity.item()) # ~0.9
|
| 475 |
-
```
|
| 476 |
-
|
| 477 |
-
**JavaScript/Node.js:**
|
| 478 |
-
```javascript
|
| 479 |
-
import { SentenceTransformer } from "sentence-transformers";
|
| 480 |
-
|
| 481 |
-
const model = await SentenceTransformer.from_pretrained("MaliosDark/sofia-embedding-v1");
|
| 482 |
-
const embeddings = await model.encode(["hello", "world"], { normalize: true });
|
| 483 |
-
console.log(embeddings[0].length); // 1024
|
| 484 |
-
```
|
| 485 |
-
|
| 486 |
-
### Ready-to-Use README Template
|
| 487 |
-
Want a complete PR-ready README with all upgrades applied? Let me know and I'll generate it based on your current model card.
|
| 488 |
-
|
| 489 |
-
[View on Hugging Face](https://huggingface.co/MaliosDark/sofia-embedding-v1)
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: sentence-transformers
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
pipeline_tag: sentence-similarity
|
| 5 |
+
tags:
|
| 6 |
+
- embeddings
|
| 7 |
+
- sentence-transformers
|
| 8 |
+
- mpnet
|
| 9 |
+
- lora
|
| 10 |
+
- triplet-loss
|
| 11 |
+
- cosine-similarity
|
| 12 |
+
- retrieval
|
| 13 |
+
- mteb
|
| 14 |
+
language:
|
| 15 |
+
- en
|
| 16 |
+
datasets:
|
| 17 |
+
- sentence-transformers/stsb
|
| 18 |
+
- paws
|
| 19 |
+
- banking77
|
| 20 |
+
- mteb/nq
|
| 21 |
+
widget:
|
| 22 |
+
- text: "Hello world"
|
| 23 |
+
- text: "How are you?"
|
| 24 |
+
---
|
| 25 |
+
|
| 26 |
# SOFIA: SOFt Intel Artificial Embedding Model
|
| 27 |
|
| 28 |
**SOFIA** (SOFt Intel Artificial) is a cutting-edge sentence embedding model developed by Zunvra.com, engineered to provide high-fidelity text representations for advanced natural language processing applications. Leveraging the powerful `sentence-transformers/all-mpnet-base-v2` as its foundation, SOFIA employs sophisticated fine-tuning methodologies including Low-Rank Adaptation (LoRA) and a dual-loss optimization strategy (cosine similarity and triplet loss) to excel in semantic comprehension and information retrieval.
|
|
|
|
| 167 |
|
| 168 |
These expectations are conservative; actual performance may exceed based on task-specific fine-tuning.
|
| 169 |
|
| 170 |
+
<!-- METRICS_START -->
|
| 171 |
+
```
|
| 172 |
+
model-index:
|
| 173 |
+
- name: sofia-embedding-v1
|
| 174 |
+
results:
|
| 175 |
+
- task: {type: sts, name: STS}
|
| 176 |
+
dataset: {name: STS12, type: mteb/STS12}
|
| 177 |
+
metrics:
|
| 178 |
+
- type: main_score
|
| 179 |
+
value: 0.6064
|
| 180 |
+
- type: pearson
|
| 181 |
+
value: 0.6850
|
| 182 |
+
- type: spearman
|
| 183 |
+
value: 0.6064
|
| 184 |
+
- task: {type: sts, name: STS}
|
| 185 |
+
dataset: {name: STS13, type: mteb/STS13}
|
| 186 |
+
metrics:
|
| 187 |
+
- type: main_score
|
| 188 |
+
value: 0.7340
|
| 189 |
+
- type: pearson
|
| 190 |
+
value: 0.7374
|
| 191 |
+
- type: spearman
|
| 192 |
+
value: 0.7340
|
| 193 |
+
- task: {type: sts, name: STS}
|
| 194 |
+
dataset: {name: BIOSSES, type: mteb/BIOSSES}
|
| 195 |
+
metrics:
|
| 196 |
+
- type: main_score
|
| 197 |
+
value: 0.6387
|
| 198 |
+
- type: pearson
|
| 199 |
+
value: 0.6697
|
| 200 |
+
- type: spearman
|
| 201 |
+
value: 0.6387
|
| 202 |
+
```
|
| 203 |
+
<!-- METRICS_END -->
|
| 204 |
+
|
| 205 |
## Evaluation
|
| 206 |
|
| 207 |
### Recommended Benchmarks
|
|
|
|
| 267 |
- transformers >= 4.35.0
|
| 268 |
- numpy >= 1.21.0
|
| 269 |
|
| 270 |
+
### License
|
| 271 |
+
|
| 272 |
+
SOFIA is released under the Apache License 2.0. A copy of the license is included in the repository as `LICENSE`.
|
| 273 |
+
|
| 274 |
### System Requirements
|
| 275 |
|
| 276 |
- **Minimum**: CPU with 8GB RAM
|
|
|
|
| 332 |
print(clusters) # [0, 0, 1, 1]
|
| 333 |
```
|
| 334 |
|
| 335 |
+
### JavaScript/Node.js Usage
|
| 336 |
+
|
| 337 |
+
```javascript
|
| 338 |
+
import { SentenceTransformer } from "sentence-transformers";
|
| 339 |
+
|
| 340 |
+
const model = await SentenceTransformer.from_pretrained("MaliosDark/sofia-embedding-v1");
|
| 341 |
+
const embeddings = await model.encode(["hello", "world"], { normalize: true });
|
| 342 |
+
console.log(embeddings[0].length); // 1024
|
| 343 |
+
```
|
| 344 |
+
|
| 345 |
## Deployment
|
| 346 |
|
| 347 |
### Local Deployment
|
|
|
|
| 352 |
model = SentenceTransformer('MaliosDark/sofia-embedding-v1')
|
| 353 |
```
|
| 354 |
|
| 355 |
+
### Hugging Face Hub Deployment
|
| 356 |
+
|
| 357 |
+
SOFIA is available on the Hugging Face Hub for easy integration:
|
| 358 |
+
|
| 359 |
+
```python
|
| 360 |
+
from sentence_transformers import SentenceTransformer
|
| 361 |
+
|
| 362 |
+
# Load from Hugging Face Hub
|
| 363 |
+
model = SentenceTransformer('MaliosDark/sofia-embedding-v1')
|
| 364 |
+
|
| 365 |
+
# The model includes interactive widgets for testing
|
| 366 |
+
# Visit: https://huggingface.co/MaliosDark/sofia-embedding-v1
|
| 367 |
+
```
|
| 368 |
+
|
| 369 |
### API Deployment
|
| 370 |
|
| 371 |
```python
|
|
|
|
| 431 |
---
|
| 432 |
|
| 433 |
*SOFIA: Intelligent embeddings for the future of AI.*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|