MarkProMaster229 commited on
Commit
e236cbb
·
verified ·
1 Parent(s): 0858624

Upload 3 files

Browse files
Files changed (3) hide show
  1. cnn_letters.safetensors +3 -0
  2. dowload.py +47 -0
  3. training_loss30.png +0 -0
cnn_letters.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fb7a8a2aa2b31911683753a2c1ec8ec9e2654b5d022d91bd6f096a2bead31ed
3
+ size 428216
dowload.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from safetensors.torch import load_file
5
+
6
+ class CNN(nn.Module):
7
+ def __init__(self):
8
+ super(CNN, self).__init__()
9
+ self.conv1 = nn.Conv2d(1, 16, kernel_size=3, padding=1)
10
+ self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
11
+ self.fc1 = nn.Linear(32*7*7, 64)
12
+ self.fc2 = nn.Linear(64, 26)
13
+
14
+ def forward(self, x):
15
+ x = F.relu(self.conv1(x))
16
+ x = F.max_pool2d(x, 2)
17
+ x = F.relu(self.conv2(x))
18
+ x = F.max_pool2d(x, 2)
19
+ x = x.view(x.size(0), -1)
20
+ x = F.relu(self.fc1(x))
21
+ x = self.fc2(x)
22
+ return x
23
+
24
+ model = CNN()
25
+ weights_dict = load_file("cnn_letters.safetensors")
26
+ model.load_state_dict(weights_dict)
27
+ model.eval()
28
+
29
+ #using
30
+
31
+ #from PIL import Image
32
+ #from torchvision import transforms
33
+ #get you image
34
+ #img = Image.open("my_letter.png").convert("L")
35
+
36
+ #transform = transforms.Compose([
37
+ # transforms.Resize((28,28)),
38
+ # transforms.ToTensor(),
39
+ # transforms.Normalize((0.5,), (0.5,))
40
+ #])
41
+
42
+ #x = transform(img).unsqueeze(0)
43
+
44
+ #with torch.no_grad():
45
+ # output = model(x)
46
+ # pred = output.argmax(dim=1)
47
+ #print(f"Predicted class: {pred.item() + 1}")
training_loss30.png ADDED