Add pipeline tag and license, update primary paper link (#1)
Browse files- Add pipeline tag and license, update primary paper link (874b85120424f68b31dd69e03ab64c2320dba14b)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
|
@@ -1,22 +1,24 @@
|
|
| 1 |
---
|
| 2 |
-
tags:
|
| 3 |
-
- compression
|
| 4 |
-
- compressAI
|
| 5 |
-
- VAE
|
| 6 |
datasets:
|
| 7 |
- FFHQ256
|
| 8 |
- Satellite_PCRS
|
| 9 |
- BSDS500
|
| 10 |
- CelebA
|
| 11 |
-
library_name:
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
---
|
|
|
|
| 14 |
# Description of available models
|
| 15 |
|
| 16 |
The models are variational autoencoders (VAEs) and compressive autoencoders (CAEs), with an additional variance decoder, that can be used for restoring images using
|
| 17 |
Variational Bayes Latent Estimation (VBLE) algorithm.
|
| 18 |
- **Associated GitHub Repository:** [Github Repo](https://github.com/MaudBqrd/VBLExz)
|
| 19 |
-
- **Associated Papers:** [Deep Priors for satellite image restoration with accurate uncertainties](https://
|
| 20 |
[Variational Bayes image restoration with compressive autoencoders](https://ieeexplore.ieee.org/abstract/document/10982450)
|
| 21 |
|
| 22 |
## Models Details
|
|
@@ -79,13 +81,13 @@ and a realistic satellite dataset simulated from PCRS [5].
|
|
| 79 |
- Dataset: FFHQ256 (RGB)
|
| 80 |
- Bitrate parameter ```alpha = 0.1800``` (high bitrate model)
|
| 81 |
|
| 82 |
-
<ins>mbt_25cm_PCRS_0.3600_std-diagonal</ins
|
| 83 |
-
- Architecture: mbt [1] model with latent dimension ```M = 320
|
| 84 |
- Dataset: PCRS (satellite images downsampled at 25cm resolution, white and black)
|
| 85 |
- Bitrate parameter ```alpha = 0.3600``` (very high bitrate model)
|
| 86 |
|
| 87 |
-
<ins>mbt_50cm_PCRS_0.3600_std-diagonal</ins
|
| 88 |
-
- Architecture: mbt [1] model with latent dimension ```M = 320
|
| 89 |
- Dataset: PCRS (satellite images downsampled at 50cm resolution, white and black)
|
| 90 |
- Bitrate parameter ```alpha = 0.3600``` (very high bitrate model)
|
| 91 |
|
|
@@ -183,4 +185,4 @@ Contact: [email protected]
|
|
| 183 |
|
| 184 |
[4] Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001, July). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings eighth IEEE international conference on computer vision. ICCV 2001 (Vol. 2, pp. 416-423). IEEE.
|
| 185 |
|
| 186 |
-
[5] Institut Géographique National (IGN), [https://www.data.gouv.fr/datasets/pcrs/]
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
datasets:
|
| 3 |
- FFHQ256
|
| 4 |
- Satellite_PCRS
|
| 5 |
- BSDS500
|
| 6 |
- CelebA
|
| 7 |
+
library_name: PyTorch
|
| 8 |
+
tags:
|
| 9 |
+
- compression
|
| 10 |
+
- compressAI
|
| 11 |
+
- VAE
|
| 12 |
+
pipeline_tag: image-to-image
|
| 13 |
+
license: apache-2.0
|
| 14 |
---
|
| 15 |
+
|
| 16 |
# Description of available models
|
| 17 |
|
| 18 |
The models are variational autoencoders (VAEs) and compressive autoencoders (CAEs), with an additional variance decoder, that can be used for restoring images using
|
| 19 |
Variational Bayes Latent Estimation (VBLE) algorithm.
|
| 20 |
- **Associated GitHub Repository:** [Github Repo](https://github.com/MaudBqrd/VBLExz)
|
| 21 |
+
- **Associated Papers:** [Deep Priors for satellite image restoration with accurate uncertainties](https://huggingface.co/papers/2412.04130),
|
| 22 |
[Variational Bayes image restoration with compressive autoencoders](https://ieeexplore.ieee.org/abstract/document/10982450)
|
| 23 |
|
| 24 |
## Models Details
|
|
|
|
| 81 |
- Dataset: FFHQ256 (RGB)
|
| 82 |
- Bitrate parameter ```alpha = 0.1800``` (high bitrate model)
|
| 83 |
|
| 84 |
+
<ins>mbt_25cm_PCRS_0.3600_std-diagonal</ins>:
|
| 85 |
+
- Architecture: mbt [1] model with latent dimension ```M = 320```.
|
| 86 |
- Dataset: PCRS (satellite images downsampled at 25cm resolution, white and black)
|
| 87 |
- Bitrate parameter ```alpha = 0.3600``` (very high bitrate model)
|
| 88 |
|
| 89 |
+
<ins>mbt_50cm_PCRS_0.3600_std-diagonal</ins>:
|
| 90 |
+
- Architecture: mbt [1] model with latent dimension ```M = 320```.
|
| 91 |
- Dataset: PCRS (satellite images downsampled at 50cm resolution, white and black)
|
| 92 |
- Bitrate parameter ```alpha = 0.3600``` (very high bitrate model)
|
| 93 |
|
|
|
|
| 185 |
|
| 186 |
[4] Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001, July). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings eighth IEEE international conference on computer vision. ICCV 2001 (Vol. 2, pp. 416-423). IEEE.
|
| 187 |
|
| 188 |
+
[5] Institut Géographique National (IGN), [https://www.data.gouv.fr/datasets/pcrs/]
|